Fractions MCQ Quiz - Objective Question with Answer for Fractions - Download Free PDF
Last updated on Jul 9, 2025
Latest Fractions MCQ Objective Questions
Fractions Question 1:
The value of \(\left[{\frac{1}{5} + \left(\frac{9}{15} \times \frac{7}{5} \right) - \left( \frac{4}{5} \times \frac{6}{9}\right) + \frac{3}{4}} \right] \) of \(\frac{2}{3}\) is equal to
Answer (Detailed Solution Below)
Fractions Question 1 Detailed Solution
Given:
\(\left[{\frac{1}{5} + \left(\frac{9}{15} \times \frac{7}{5} \right) - \left( \frac{4}{5} \times \frac{6}{9}\right) + \frac{3}{4}} \right] \) of \(\frac{2}{3}\)
Concept used:
Follow the BODMAS rule according to the table given below:
Calculation:
⇒ \(\left[{\frac{1}{5} + \left(\frac{9}{15} \times \frac{7}{5} \right) - \left( \frac{4}{5} \times \frac{6}{9}\right) + \frac{3}{4}} \right] \) of \(\frac{2}{3}\)
⇒ \(\left[{\frac{1}{5} + \left(\frac{21}{25} \right) - \left( \frac{24}{45}\right) + \frac{3}{4}} \right] \)of \(\frac{2}{3}\)
⇒ \(\left[{\frac{60 + 252 - 160 + 225}{300}} \right] \times \frac{2}{3} \)
⇒ \(\left[{\frac{377}{300}} \right] \times \frac{2}{3} \)
⇒ \(\frac{377}{450}\)
∴ \(\left[{\frac{1}{5} + \left(\frac{9}{15} × \frac{7}{5} \right) - \left( \frac{4}{5} × \frac{6}{9}\right) + \frac{3}{4}} \right] × \frac{2}{3} = \frac{377}{450} \)
Fractions Question 2:
\(\text{What is the value of } \frac{3}{8} + \frac{1}{8} + \frac{5}{16} + \frac{2}{8} - 2? \)
Answer (Detailed Solution Below)
Fractions Question 2 Detailed Solution
Given:
\(\frac{3}{8} + \frac{1}{8} + \frac{5}{16} + \frac{2}{8} - 2\)
Calculation:
\(\frac{3}{8} + \frac{1}{8} + \frac{5}{16} + \frac{2}{8} - 2\)
⇒ \(\frac{3 \times 2 + 1 \times 2 + 5 + 2 \times 2 - 2 \times 16}{16}\)
⇒ \(\frac{6 + 2 + 5 + 4 - 32}{16}\)
⇒ \(\frac{17 - 32}{16}\)
⇒ \(-\frac{15}{16}\)
The correct answer is Option (4).
Fractions Question 3:
\(\frac{81}{3} \times \frac{27}{3} = ?\)
Answer (Detailed Solution Below)
Fractions Question 3 Detailed Solution
Given:
\(\frac{81}{3} \times \frac{27}{3} = ?\)
Calculation:
\(\frac{81}{3} \times \frac{27}{3} = ?\)
⇒ \(\frac{81}{3} = 27\)
⇒ \(\frac{27}{3} = 9\)
⇒ 27 × 9 = 243
∴ The correct answer is: 243
Fractions Question 4:
What is the value of \(\frac{2}{1 \times 3}+\frac{2}{3 \times 5}+\frac{2}{5 \times 7} \ldots . .+\frac{2}{45 \times 47} \text { ? }\)
Answer (Detailed Solution Below)
Fractions Question 4 Detailed Solution
Given:
Expression: \(\frac{2}{1 \times 3} + \frac{2}{3 \times 5} + \frac{2}{5 \times 7} + \ldots + \frac{2}{45 \times 47} \)
Formula used:
Simplify each term using partial fraction decomposition.
Calculation:
Each term can be written as:
\(\frac{2}{n(n+2)} = \frac{1}{n} - \frac{1}{n+2}\)
Applying this to the given series:
\(\left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{7} \right) + \ldots + \left( \frac{1}{45} - \frac{1}{47} \right)\)
All intermediate terms cancel out, and we are left with:
\(1 - \frac{1}{47} = \frac{46}{47}\)
∴ The value of the series is \(\frac{46}{47} \).
Fractions Question 5:
Solve: \(\frac{(-2-3) \times(5+3) \div(-2-3)}{(-6-4) \div(-7-5)}\)
Answer (Detailed Solution Below)
Fractions Question 5 Detailed Solution
Given:
\(\frac{(-2-3) ×(5+3) ÷(-2-3)}{(-6-4) ÷(-7-5)}\)
Formula Used:
Follow the order of operations (PEMDAS/BODMAS)
Calculation:
Calculate the values step by step:
(-2 - 3) = -5
(5 + 3) = 8
(-2 - 3) = -5
(-6 - 4) = -10
(-7 - 5) = -12
Now substitute back into the expression:
\(\left(-5 × 8 ÷ -5\right) ÷ \left(-10 ÷ -12\right)\)
Simplify inside the parentheses first:
-5 × 8 = -40
-40 ÷ -5 = 8
Simplify the second part:
-10 ÷ -12 = \(\frac{10}{12} = \frac{5}{6}\)
Now divide the results:
8 ÷ \(\frac{5}{6}\) = 8 × (6/5)
48/5 = 9.6
The correct answer is option 4, 9.6.
Top Fractions MCQ Objective Questions
What is the value of \(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}?\)
Answer (Detailed Solution Below)
Fractions Question 6 Detailed Solution
Download Solution PDFSolution:
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 25/2 + 37/3 + 73/6
= (75 + 74 + 73)/6
= 222/6
= 37
Shortcut Trick
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)
= 36 + 1 = 37
Which of the fractions given below, when added to 5/8, give 1?
Answer (Detailed Solution Below)
Fractions Question 7 Detailed Solution
Download Solution PDFLet that fraction be x.
⇒ x + 5/8 = 1
⇒ x = 1 – 5/8
⇒ x = 3/8 = 6/16Find the value of \(4\frac{1}{5}-\left[ 3\frac{1}{3}-\left\{ 2\frac{1}{2}-\left( \frac{1}{3}+\frac{1}{6}-\frac{1}{12} \right) \right\} \right]\)
Answer (Detailed Solution Below)
Fractions Question 8 Detailed Solution
Download Solution PDF\(\Rightarrow 4\frac{1}{5}-\left[ 3\frac{1}{3}-\left\{ 2\frac{1}{2}-\left( \frac{1}{3}+\frac{1}{6}-\frac{1}{12} \right) \right\} \right]\)
\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3}-\left\{ {\frac{5}{2} - \left( {\frac{{4{\rm{\;}} + {\rm{\;}}2{\rm{\;}}-{\rm{\;}}1}}{{12}}} \right)} \right\}} \right]\)
\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3} - \left\{ {\frac{5}{2} - \frac{5}{{12}}} \right\}} \right]\)
\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3} - \frac{{25}}{{12}}} \right]\)
\(\Rightarrow \frac{{21}}{5} - \frac{{15}}{{12}}\)
\(\Rightarrow \frac{{21}}{5} - \frac{5}{4}\)
\(\Rightarrow \frac{{84 - 25{\rm{\;}}}}{{20}}\)
⇒ 59/20
If the fractions 7/13, 2/3, 4/11, 5/9 are arranged in ascending order, then the correct sequence is ?
Answer (Detailed Solution Below)
Fractions Question 9 Detailed Solution
Download Solution PDF(7/13) = 0.538
(2/3) = 0.666
(4/11) = 0.3636
(5/9) = 0.5555
Out of 2/3, 7/13, 4/11, 5/9
2/3 is the largest number followed by 5/9 then 7/13 and the smallest is 4/11.
∴ The ascending order will be 4/11, 7/13, 5/9, 2/3.If (5x - 2y) ∶ (x - 2y) = 9 ∶ 17, then find the value of \(\rm \frac{9x}{13y}\).
Answer (Detailed Solution Below)
Fractions Question 10 Detailed Solution
Download Solution PDFGiven:
(5x - 2y) ∶ (x - 2y) = 9 ∶ 17
Calculation:
The given ratio can be written as:
(5x - 2y)/(x - 2y) = 9/17
17 × (5x - 2y) = 9 × (x - 2y)
85x - 34y = 9x - 18y
76x = 16y
x/y = 16/76
x/y = 4/19
9 × (4/19)/13 = 36/247
So, 9x/13y = 36/247.
7/9 of the people present in a hall are sitting in 9/13 of the chairs available and the rest are standing. If there are 28 empty chairs, how many chairs would have been still empty if everyone in the hall was sitting?
Answer (Detailed Solution Below)
Fractions Question 11 Detailed Solution
Download Solution PDFLet the number of people be x and number of the chair be y.
Number of available chair = y × (9/13) = 9y/13
Number of empty chair = y - (9y/13) = 4y/13
Given, Number of empty chairs = 28
According to the question
4y/13 = 28
y = 28 × (13/4) = 91
Total number of chairs = 91
Number of chairs in which people are sitting = 91 - 28 = 63
Number of people who sit = x × (7/9) = 7x/9
According to the question
7x/9 = 63
x = 63 × (9/7) = 81
Total number of people are = 81
Chairs would have been still empty if everyone in the hall was sitting = 91 - 81 = 10The value of \(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\) is:
Answer (Detailed Solution Below)
Fractions Question 12 Detailed Solution
Download Solution PDFFormula used:
a2 - b2 = (a + b)(a - b)
Calculation
⇒ \(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\)
⇒ [(p + q - r)(p - q + r)]/[(p + q + r)(p - q + r)] + [(p + q - r)(q - p + r)]/[(p + q + r)(p + q - r)] + [(p - q + r)(q -p + r)]/[(p + q + r)(q - p + r)]
⇒ [(p + q - r)]/[(p + q + r)] + [q - p + r)]/[(p + q + r)] + [(p - q + r)]/[(p + q + r)]
⇒ [(p + q - r)]/[(p + q + r)] + [q - p + r)]/[(p + q + r)] + [(p - q + r)]/[(p + q + r)]
⇒ (p + q + r)/(p + q + r)
⇒ 1.
The value is 1.
Shortcut Trick
Let put p = q = r = 1
So,
\(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\)
⇒ \(\rm\frac{1^2-(1-1)^2}{(1+1)^2-1^2}+\frac{1^2-(1-1)^2}{(1+1)^2-1^2}+\frac{1^2-(1-1)^2}{(1+1)^2-1^2}\)
⇒ \(\rm\frac{1-0}{(4-1)}+\frac{1-0}{(4-1)}+\frac{1-0}{(4-1)}\)
⇒ 1/3 + 1/3 + 1/3 = 1
Hence, The value is 1.
If \(\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{1}{{1{\rm{\;}} + {\rm{\;}}\frac{{\rm{x}}}{{1{\rm{\;}} - {\rm{\;x}}}}}}}}{\rm{\;}} = {\rm{\;}}1\), then find the value of 'x'.
Answer (Detailed Solution Below)
Fractions Question 13 Detailed Solution
Download Solution PDFGiven:
\(\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{1}{{1{\rm{\;}} + {\rm{\;}}\frac{{\rm{x}}}{{1{\rm{\;}} - {\rm{\;x}}}}}}}}{\rm{\;}} = {\rm{\;}}1\)
Calculation:
\(\Rightarrow {\rm{\;}}\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{{1 - {\rm{x}}}}{{1 - {\rm{x\;}} + {\rm{\;x}}}}}}{\rm{\;}} = {\rm{\;}}1 \)
\(\Rightarrow {\rm{\;}}\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}1 - {\rm{x}}}}{\rm{\;}} = {\rm{\;}}1\)
⇒ 5x/(2 – x) = 1
⇒ 5x = 2 – x
⇒ 6x = 2
⇒ x = 2/6
∴ The required value of x is 1/3.
Which of the following fractions is the largest?
Answer (Detailed Solution Below)
Fractions Question 14 Detailed Solution
Download Solution PDFGiven:
The fractions are 13/19, 25/ 31, 28/31, 70/79.
Calculation:
The values are-
13/19 = 0.68
25/31 = 0.80
28/31 = 0.90
70/79 = 0.88
∴ Option C is correct.
What will come in place of question mark '?' in the following question?
\(5\frac{1}{6} - 3\frac{4}{9} + \ ? = \frac{7}{3} \times 4\frac{1}{6}\)
Answer (Detailed Solution Below)
Fractions Question 15 Detailed Solution
Download Solution PDFConcept Used:
Follow BODMAS rule to solve this question, as per the order given below,
Calculations:
Given expression is,
\(\Rightarrow 5\frac{1}{6} - 3\frac{4}{9} + ? = \frac{7}{3} \times 4\frac{1}{6}\)
\(\Rightarrow {\rm{\;}}\frac{{31}}{6} - \frac{{31}}{9} + ? = \frac{7}{3} \times \frac{{25}}{6}\)
\(\Rightarrow 31\left( {\frac{1}{6} - \frac{1}{9}} \right) + \;? = \left( {\frac{{175}}{{18}}} \right)\)
\(\Rightarrow {\rm{\;}}31(\frac{3}{{54}}) + ? = \frac{{175}}{{18}}\)
\(\Rightarrow {\rm{\;}}\frac{{31}}{{18}} + ? = \frac{{175}}{{18}}\)
⇒ ? = 144/18
⇒ ? = 8