Fractions MCQ Quiz - Objective Question with Answer for Fractions - Download Free PDF

Last updated on May 29, 2025

Fractions questions are not difficult to solve but require practice nonetheless to avoid silly mistakes. Practice with these Fractions MCQs Quiz selected by Testbook’s team of experts. Our team also has worked on bringing you the explanations to all the solutions to every question listed in this set of Fractions objective questions. Get shortcuts and tips to solve every type of question in less time and with more accuracy. So check out these Fractions question answers now!

Latest Fractions MCQ Objective Questions

Fractions Question 1:

If \(\rm \frac{x}{y}=\frac{6}{5}\) then \(\rm \frac{6}{7}-\frac{5x-y}{5x+y}\) = ?

  1. \(\frac{1}{7}\)
  2. \(\frac{2}{7}\)
  3. \(\frac{3}{7}\)
  4. \(\frac{4}{7}\)
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{7}\)

Fractions Question 1 Detailed Solution

Calculation:

\(\rm \frac{x}{y}=\frac{6}{5}\)   ---(1)

Now we have,

\(\rm \frac{6}{7}-\frac{5x-y}{5x+y}\)

\(\rm \frac{6}{7}-\frac{y(5\times\frac{x}{y}-1)}{y(5\times \frac{x}{y}+1)}\)

⇒ \(\rm \frac{6}{7}-\frac{5\times\frac{6}{5}-1}{5\times\frac{6}{5}+1}\)       [using (1)]

⇒ \(\rm \frac{6}{7}-\frac{6-1}{6+1}\)

⇒ \(\frac{6}{7}-\frac{5}{7} = \frac{1}{7}\)

⇒ \(\rm \frac{6}{7}-\frac{5x-y}{5x+y}=\frac{1}{7}\)

∴ The correct answer is \(\frac{1}{7}\)

Fractions Question 2:

Find the value of \(\rm \left[(32\div8)\times \left\{\frac{15}{5}+\frac{30}{5}\times (7-2)\right\}\right]\)

  1. 116
  2. 143
  3. 149
  4. 132
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : 132

Fractions Question 2 Detailed Solution

Given:

Expression: [(32 ÷ 8) × {(15 ÷ 5) + (30 ÷ 5) × (7 - 2)}]

Calculations:

Step 1: Simplify the terms inside the parentheses:

32 ÷ 8 = 4

15 ÷ 5 = 3

30 ÷ 5 = 6

7 - 2 = 5

Step 2: Simplify the multiplication:

(6 × 5) = 30

Step 3: Add the results:

3 + 30 = 33

Step 4: Multiply the results:

4 × 33 = 132

∴ The value of the expression is 132.

Fractions Question 3:

The value of \(\frac{0.0203 \times 2.92}{0.7 \times 0.0365 \times 2.9}\) is:

  1. 0.8
  2. 0.3
  3. 0.7
  4. 0.5
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 0.8

Fractions Question 3 Detailed Solution

Calculation:

The given expression,

\(\frac{0.0203 \times 2.92}{0.7 \times 0.0365 \times 2.9}\)

Remove the decimal from numerator and denominator:

\(\frac{203 \times 292\times 10^6}{7 \times 365 \times 29\times 10^6}\)

Cancel out the terms from numerator and denominator:

\(\frac{292}{365}\)

0.8

Option 1 is the correct answer.

Fractions Question 4:

The value of \(\frac{7}{10} \div 1 \frac{2}{5} \text { of } \frac{3}{4}-1 \frac{1}{4} \text { of } \frac{2}{3} \div 4 \frac{1}{6}+\frac{1}{15}\) is:

  1. \(\frac{3}{7}\)
  2. \(\frac{1}{5}\)
  3. \(\frac{8}{15}\)
  4. 1
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\frac{8}{15}\)

Fractions Question 4 Detailed Solution

Given:

The expression is \(\dfrac{7}{10} ÷ 1 \dfrac{2}{5} \text { of } \dfrac{3}{4}-1 \dfrac{1}{4} \text { of } \dfrac{2}{3} ÷ 4 \dfrac{1}{6}+\dfrac{1}{15}\)

Formula used:

Follow the BODMAS rule according to the table given below:

image (2)

Calculation:

\(\dfrac{7}{10} ÷ 1 \dfrac{2}{5} \text { of } \dfrac{3}{4}-1 \dfrac{1}{4} \text { of } \dfrac{2}{3} ÷ 4 \dfrac{1}{6}+\dfrac{1}{15}\)

⇒ \(\dfrac{7}{10}\) ÷ \(\dfrac{7}{5}\) × \(\dfrac{3}{4}\) - \(\dfrac{5}{4}\) × \(\dfrac{2}{3}\) ÷ \(\dfrac{25}{6}\) + \(\dfrac{1}{15}\)

⇒ \(\dfrac{7}{10}\) ÷ \(\dfrac{21}{20}\) \(\dfrac{5}{6}\) ÷ \(\dfrac{25}{6}\) + \(\dfrac{1}{15}\)

⇒ \(\dfrac{7}{10}\) × \(\dfrac{20}{21}\) \(\dfrac{5}{6}\)​ × \(\dfrac{6}{25}\) + \(\dfrac{1}{15}\)

37" id="MathJax-Element-303-Frame" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-13-Frame" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-50-Frame" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-574-Frame" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-27-Frame" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-21-Frame" role="presentation" style="position: relative;" tabindex="0"> ⇒ \(\dfrac{2}{3}\) \(\dfrac{1}{5}\)​ \(\dfrac{1}{15}\) = \(\dfrac{(10 - 3 + 1)}{15}\) = \(\dfrac{8}{15}\)

∴ \(\dfrac{7}{10} ÷ 1 \dfrac{2}{5} \text { of } \dfrac{3}{4}-1 \dfrac{1}{4} \text { of } \dfrac{2}{3} ÷ 4 \dfrac{1}{6}+\dfrac{1}{15}\) is \(\dfrac{8}{15}\).37" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-14-Frame" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-51-Frame" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-575-Frame" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-28-Frame" role="presentation" style="position: relative;" tabindex="0">" id="MathJax-Element-22-Frame" role="presentation" style="position: relative;" tabindex="0">

Fractions Question 5:

Simplify:

\(\rm 864\div \left\{\frac{3}{4}\left[\frac{16}{15}\right]-\frac{2}{3}\right\}=?\)

  1. 8640
  2. 8460
  3. 6480
  4. 6840
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 6480

Fractions Question 5 Detailed Solution

Concept Used:

Calculation:

⇒ \(\rm 864÷ \left\{\frac{3}{4}\left[\frac{16}{15}\right]-\frac{2}{3}\right\} \)

⇒ 864 ÷ {3/4 × 16/15 - 2/3}

⇒ 864 ÷ {4/5 - 2/3}

⇒ 864 ÷ {\(\frac{4 × 3\ - \ 2 × 5}{5 × 3}\)}

⇒ 864 ÷ {\(\frac{12 \ - \ 10}{15}\)}

⇒ 864 ÷ 2/15

⇒ 864 × 15/2

⇒ 6480

∴ The simplified value is 6480

Top Fractions MCQ Objective Questions

What is the value of \(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}?\)

  1. 36
  2. 37
  3. 39
  4. 38

Answer (Detailed Solution Below)

Option 2 : 37

Fractions Question 6 Detailed Solution

Download Solution PDF

Solution:

\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)

= 25/2 + 37/3 + 73/6

= (75 + 74 + 73)/6

= 222/6

= 37


Shortcut Trick

\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)

= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)

= 36 + 1 = 37

Which of the fractions given below, when added to 5/8, give 1?

  1. 6/24 
  2. 5/2
  3. 6/16
  4. 6/3

Answer (Detailed Solution Below)

Option 3 : 6/16

Fractions Question 7 Detailed Solution

Download Solution PDF

Let that fraction be x.

⇒ x + 5/8 = 1

⇒ x = 1 – 5/8

⇒ x = 3/8 = 6/16

If the fractions 7/13, 2/3, 4/11, 5/9 are arranged in ascending order, then the correct sequence is ?

  1. 2/3, 7/13, 4/11, 5/9
  2.  7/13, 4/11, 5/9, 2/3
  3. 4/11, 7/13, 5/9, 2/3
  4. 5/9, 4/11, 7/13, 2/3

Answer (Detailed Solution Below)

Option 3 : 4/11, 7/13, 5/9, 2/3

Fractions Question 8 Detailed Solution

Download Solution PDF

(7/13) = 0.538

(2/3) = 0.666

(4/11) = 0.3636

(5/9) = 0.5555

Out of 2/3, 7/13, 4/11, 5/9

2/3 is the largest number followed by 5/9 then 7/13 and the smallest is 4/11.

∴ The ascending order will be 4/11, 7/13, 5/9, 2/3.

Find the value of \(4\frac{1}{5}-\left[ 3\frac{1}{3}-\left\{ 2\frac{1}{2}-\left( \frac{1}{3}+\frac{1}{6}-\frac{1}{12} \right) \right\} \right]\)

  1. 59/20
  2. 34/90
  3. 65/67
  4. 45/67

Answer (Detailed Solution Below)

Option 1 : 59/20

Fractions Question 9 Detailed Solution

Download Solution PDF

\(\Rightarrow 4\frac{1}{5}-\left[ 3\frac{1}{3}-\left\{ 2\frac{1}{2}-\left( \frac{1}{3}+\frac{1}{6}-\frac{1}{12} \right) \right\} \right]\)

\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3}-\left\{ {\frac{5}{2} - \left( {\frac{{4{\rm{\;}} + {\rm{\;}}2{\rm{\;}}-{\rm{\;}}1}}{{12}}} \right)} \right\}} \right]\)

\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3} - \left\{ {\frac{5}{2} - \frac{5}{{12}}} \right\}} \right]\)

\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3} - \frac{{25}}{{12}}} \right]\)

\(\Rightarrow \frac{{21}}{5} - \frac{{15}}{{12}}\)

\(\Rightarrow \frac{{21}}{5} - \frac{5}{4}\)

\(\Rightarrow \frac{{84 - 25{\rm{\;}}}}{{20}}\)

⇒ 59/20

7/9 of the people present in a hall are sitting in 9/13 of the chairs available and the rest are standing. If there are 28 empty chairs, how many chairs would have been still empty if everyone in the hall was sitting?

  1. 15
  2. 12
  3. 18
  4. 10

Answer (Detailed Solution Below)

Option 4 : 10

Fractions Question 10 Detailed Solution

Download Solution PDF

Let the number of people be x and number of the chair be y.

Number of available chair = y × (9/13) = 9y/13

Number of empty chair = y - (9y/13) = 4y/13

Given, Number of empty chairs = 28

According to the question

4y/13 = 28

y = 28 × (13/4) = 91

Total number of chairs = 91

Number of chairs in which people are sitting = 91 - 28 = 63

Number of people who sit = x × (7/9) = 7x/9

According to the question

7x/9 = 63

x = 63 × (9/7) = 81

Total number of people are = 81

Chairs would have been still empty if everyone in the hall was sitting = 91 - 81 = 10

The value of \(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\) is:

  1. 1
  2. 2
  3. 0
  4. 3

Answer (Detailed Solution Below)

Option 1 : 1

Fractions Question 11 Detailed Solution

Download Solution PDF

Formula used:

a2 - b2 = (a + b)(a - b)

Calculation

⇒ \(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\)

⇒ [(p + q - r)(p - q + r)]/[(p + q + r)(p - q + r)] + [(p + q - r)(q - p + r)]/[(p + q + r)(p + q - r)] + [(p - q + r)(q  -p + r)]/[(p + q + r)(q - p + r)]

⇒ [(p + q - r)]/[(p + q + r)] + [q - p + r)]/[(p + q + r)] + [(p - q + r)]/[(p + q + r)]

⇒ [(p + q - r)]/[(p + q + r)] + [q - p + r)]/[(p + q + r)] + [(p - q + r)]/[(p + q + r)]

⇒ (p + q + r)/(p + q + r)

⇒ 1.

The value is 1.

Shortcut Trick

Let put p = q = r = 1

So,

\(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\)

⇒ \(\rm\frac{1^2-(1-1)^2}{(1+1)^2-1^2}+\frac{1^2-(1-1)^2}{(1+1)^2-1^2}+\frac{1^2-(1-1)^2}{(1+1)^2-1^2}\)

⇒ \(\rm\frac{1-0}{(4-1)}+\frac{1-0}{(4-1)}+\frac{1-0}{(4-1)}\)

⇒ 1/3 + 1/3 + 1/3 = 1

Hence, The value is 1.

If (5x - 2y) ∶ (x - 2y) = 9 ∶ 17, then find the value of \(\rm \frac{9x}{13y}\).

  1. \(\frac{72}{421}\)
  2. \(\frac{151}{1731}\)
  3. \(\frac{36}{247}\)
  4. \(\frac{144}{1001}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{36}{247}\)

Fractions Question 12 Detailed Solution

Download Solution PDF

Given:

(5x - 2y) ∶ (x - 2y) = 9 ∶ 17

Calculation:

The given ratio can be written as:

(5x - 2y)/(x - 2y) = 9/17

17 × (5x - 2y) = 9 × (x - 2y)

85x - 34y = 9x - 18y

76x = 16y

x/y = 16/76

x/y = 4/19

9 × (4/19)/13 = 36/247

So, 9x/13y = 36/247.

Which of the following fractions is the largest?

  1. 13/19
  2. 25/31
  3. 28/31
  4. 70/79

Answer (Detailed Solution Below)

Option 3 : 28/31

Fractions Question 13 Detailed Solution

Download Solution PDF

Given:

The fractions are 13/19, 25/ 31, 28/31, 70/79.

Calculation:

The values are-

13/19 = 0.68

25/31 = 0.80

28/31 = 0.90

70/79 = 0.88

∴ Option C is correct.

If \(\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{1}{{1{\rm{\;}} + {\rm{\;}}\frac{{\rm{x}}}{{1{\rm{\;}} - {\rm{\;x}}}}}}}}{\rm{\;}} = {\rm{\;}}1\), then find the value of 'x'.

  1. 1/3
  2. 2/3
  3. 1
  4. 5/3

Answer (Detailed Solution Below)

Option 1 : 1/3

Fractions Question 14 Detailed Solution

Download Solution PDF

Given:

\(\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{1}{{1{\rm{\;}} + {\rm{\;}}\frac{{\rm{x}}}{{1{\rm{\;}} - {\rm{\;x}}}}}}}}{\rm{\;}} = {\rm{\;}}1\)

Calculation:

\(\Rightarrow {\rm{\;}}\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{{1 - {\rm{x}}}}{{1 - {\rm{x\;}} + {\rm{\;x}}}}}}{\rm{\;}} = {\rm{\;}}1 \)

\(\Rightarrow {\rm{\;}}\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}1 - {\rm{x}}}}{\rm{\;}} = {\rm{\;}}1\)

⇒ 5x/(2 – x) = 1

⇒ 5x = 2 – x

⇒ 6x = 2

⇒ x = 2/6

∴ The required value of x is 1/3.

What will come in place of question mark '?' in the following question?

\(5\frac{1}{6} - 3\frac{4}{9} + \ ? = \frac{7}{3} \times 4\frac{1}{6}\)

  1. 8
  2. 9
  3. 7
  4. 6
  5. 4

Answer (Detailed Solution Below)

Option 1 : 8

Fractions Question 15 Detailed Solution

Download Solution PDF

Concept Used:

Follow BODMAS rule to solve this question, as per the order given below,

Calculations:

Given expression is,

\(\Rightarrow 5\frac{1}{6} - 3\frac{4}{9} + ? = \frac{7}{3} \times 4\frac{1}{6}\)

\(\Rightarrow {\rm{\;}}\frac{{31}}{6} - \frac{{31}}{9} + ? = \frac{7}{3} \times \frac{{25}}{6}\)

\(\Rightarrow 31\left( {\frac{1}{6} - \frac{1}{9}} \right) + \;? = \left( {\frac{{175}}{{18}}} \right)\)

\(\Rightarrow {\rm{\;}}31(\frac{3}{{54}}) + ? = \frac{{175}}{{18}}\)

\(\Rightarrow {\rm{\;}}\frac{{31}}{{18}} + ? = \frac{{175}}{{18}}\)

⇒ ? = 144/18

⇒ ? = 8

Get Free Access Now
Hot Links: teen patti palace teen patti cash game teen patti sweet teen patti 50 bonus teen patti jodi