Fractions MCQ Quiz - Objective Question with Answer for Fractions - Download Free PDF
Last updated on May 29, 2025
Latest Fractions MCQ Objective Questions
Fractions Question 1:
If \(\rm \frac{x}{y}=\frac{6}{5}\) then \(\rm \frac{6}{7}-\frac{5x-y}{5x+y}\) = ?
Answer (Detailed Solution Below)
Fractions Question 1 Detailed Solution
Calculation:
\(\rm \frac{x}{y}=\frac{6}{5}\) ---(1)
Now we have,
\(\rm \frac{6}{7}-\frac{5x-y}{5x+y}\)
\(\rm \frac{6}{7}-\frac{y(5\times\frac{x}{y}-1)}{y(5\times \frac{x}{y}+1)}\)
⇒ \(\rm \frac{6}{7}-\frac{5\times\frac{6}{5}-1}{5\times\frac{6}{5}+1}\) [using (1)]
⇒ \(\rm \frac{6}{7}-\frac{6-1}{6+1}\)
⇒ \(\frac{6}{7}-\frac{5}{7} = \frac{1}{7}\)
⇒ \(\rm \frac{6}{7}-\frac{5x-y}{5x+y}=\frac{1}{7}\)
∴ The correct answer is \(\frac{1}{7}\)
Fractions Question 2:
Find the value of \(\rm \left[(32\div8)\times \left\{\frac{15}{5}+\frac{30}{5}\times (7-2)\right\}\right]\)
Answer (Detailed Solution Below)
Fractions Question 2 Detailed Solution
Given:
Expression: [(32 ÷ 8) × {(15 ÷ 5) + (30 ÷ 5) × (7 - 2)}]
Calculations:
Step 1: Simplify the terms inside the parentheses:
32 ÷ 8 = 4
15 ÷ 5 = 3
30 ÷ 5 = 6
7 - 2 = 5
Step 2: Simplify the multiplication:
(6 × 5) = 30
Step 3: Add the results:
3 + 30 = 33
Step 4: Multiply the results:
4 × 33 = 132
∴ The value of the expression is 132.
Fractions Question 3:
The value of \(\frac{0.0203 \times 2.92}{0.7 \times 0.0365 \times 2.9}\) is:
Answer (Detailed Solution Below)
Fractions Question 3 Detailed Solution
Calculation:
The given expression,
⇒\(\frac{0.0203 \times 2.92}{0.7 \times 0.0365 \times 2.9}\)
Remove the decimal from numerator and denominator:
⇒\(\frac{203 \times 292\times 10^6}{7 \times 365 \times 29\times 10^6}\)
Cancel out the terms from numerator and denominator:
⇒\(\frac{292}{365}\)
⇒0.8
Option 1 is the correct answer.
Fractions Question 4:
The value of \(\frac{7}{10} \div 1 \frac{2}{5} \text { of } \frac{3}{4}-1 \frac{1}{4} \text { of } \frac{2}{3} \div 4 \frac{1}{6}+\frac{1}{15}\) is:
Answer (Detailed Solution Below)
Fractions Question 4 Detailed Solution
Given:
The expression is \(\dfrac{7}{10} ÷ 1 \dfrac{2}{5} \text { of } \dfrac{3}{4}-1 \dfrac{1}{4} \text { of } \dfrac{2}{3} ÷ 4 \dfrac{1}{6}+\dfrac{1}{15}\)
Formula used:
Follow the BODMAS rule according to the table given below:
Calculation:
\(\dfrac{7}{10} ÷ 1 \dfrac{2}{5} \text { of } \dfrac{3}{4}-1 \dfrac{1}{4} \text { of } \dfrac{2}{3} ÷ 4 \dfrac{1}{6}+\dfrac{1}{15}\)
⇒ \(\dfrac{7}{10}\) ÷ \(\dfrac{7}{5}\) × \(\dfrac{3}{4}\) - \(\dfrac{5}{4}\) × \(\dfrac{2}{3}\) ÷ \(\dfrac{25}{6}\) + \(\dfrac{1}{15}\)
⇒ \(\dfrac{7}{10}\) ÷ \(\dfrac{21}{20}\) - \(\dfrac{5}{6}\) ÷ \(\dfrac{25}{6}\) + \(\dfrac{1}{15}\)
⇒ \(\dfrac{7}{10}\) × \(\dfrac{20}{21}\) - \(\dfrac{5}{6}\) × \(\dfrac{6}{25}\) + \(\dfrac{1}{15}\)
∴ \(\dfrac{7}{10} ÷ 1 \dfrac{2}{5} \text { of } \dfrac{3}{4}-1 \dfrac{1}{4} \text { of } \dfrac{2}{3} ÷ 4 \dfrac{1}{6}+\dfrac{1}{15}\) is \(\dfrac{8}{15}\).
Fractions Question 5:
Simplify:
\(\rm 864\div \left\{\frac{3}{4}\left[\frac{16}{15}\right]-\frac{2}{3}\right\}=?\)
Answer (Detailed Solution Below)
Fractions Question 5 Detailed Solution
Concept Used:
Calculation:
⇒ \(\rm 864÷ \left\{\frac{3}{4}\left[\frac{16}{15}\right]-\frac{2}{3}\right\} \)
⇒ 864 ÷ {3/4 × 16/15 - 2/3}
⇒ 864 ÷ {4/5 - 2/3}
⇒ 864 ÷ {\(\frac{4 × 3\ - \ 2 × 5}{5 × 3}\)}
⇒ 864 ÷ {\(\frac{12 \ - \ 10}{15}\)}
⇒ 864 ÷ 2/15
⇒ 864 × 15/2
⇒ 6480
∴ The simplified value is 6480
Top Fractions MCQ Objective Questions
What is the value of \(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}?\)
Answer (Detailed Solution Below)
Fractions Question 6 Detailed Solution
Download Solution PDFSolution:
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 25/2 + 37/3 + 73/6
= (75 + 74 + 73)/6
= 222/6
= 37
Shortcut Trick
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)
= 36 + 1 = 37
Which of the fractions given below, when added to 5/8, give 1?
Answer (Detailed Solution Below)
Fractions Question 7 Detailed Solution
Download Solution PDFLet that fraction be x.
⇒ x + 5/8 = 1
⇒ x = 1 – 5/8
⇒ x = 3/8 = 6/16If the fractions 7/13, 2/3, 4/11, 5/9 are arranged in ascending order, then the correct sequence is ?
Answer (Detailed Solution Below)
Fractions Question 8 Detailed Solution
Download Solution PDF(7/13) = 0.538
(2/3) = 0.666
(4/11) = 0.3636
(5/9) = 0.5555
Out of 2/3, 7/13, 4/11, 5/9
2/3 is the largest number followed by 5/9 then 7/13 and the smallest is 4/11.
∴ The ascending order will be 4/11, 7/13, 5/9, 2/3.Find the value of \(4\frac{1}{5}-\left[ 3\frac{1}{3}-\left\{ 2\frac{1}{2}-\left( \frac{1}{3}+\frac{1}{6}-\frac{1}{12} \right) \right\} \right]\)
Answer (Detailed Solution Below)
Fractions Question 9 Detailed Solution
Download Solution PDF\(\Rightarrow 4\frac{1}{5}-\left[ 3\frac{1}{3}-\left\{ 2\frac{1}{2}-\left( \frac{1}{3}+\frac{1}{6}-\frac{1}{12} \right) \right\} \right]\)
\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3}-\left\{ {\frac{5}{2} - \left( {\frac{{4{\rm{\;}} + {\rm{\;}}2{\rm{\;}}-{\rm{\;}}1}}{{12}}} \right)} \right\}} \right]\)
\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3} - \left\{ {\frac{5}{2} - \frac{5}{{12}}} \right\}} \right]\)
\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3} - \frac{{25}}{{12}}} \right]\)
\(\Rightarrow \frac{{21}}{5} - \frac{{15}}{{12}}\)
\(\Rightarrow \frac{{21}}{5} - \frac{5}{4}\)
\(\Rightarrow \frac{{84 - 25{\rm{\;}}}}{{20}}\)
⇒ 59/20
7/9 of the people present in a hall are sitting in 9/13 of the chairs available and the rest are standing. If there are 28 empty chairs, how many chairs would have been still empty if everyone in the hall was sitting?
Answer (Detailed Solution Below)
Fractions Question 10 Detailed Solution
Download Solution PDFLet the number of people be x and number of the chair be y.
Number of available chair = y × (9/13) = 9y/13
Number of empty chair = y - (9y/13) = 4y/13
Given, Number of empty chairs = 28
According to the question
4y/13 = 28
y = 28 × (13/4) = 91
Total number of chairs = 91
Number of chairs in which people are sitting = 91 - 28 = 63
Number of people who sit = x × (7/9) = 7x/9
According to the question
7x/9 = 63
x = 63 × (9/7) = 81
Total number of people are = 81
Chairs would have been still empty if everyone in the hall was sitting = 91 - 81 = 10The value of \(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\) is:
Answer (Detailed Solution Below)
Fractions Question 11 Detailed Solution
Download Solution PDFFormula used:
a2 - b2 = (a + b)(a - b)
Calculation
⇒ \(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\)
⇒ [(p + q - r)(p - q + r)]/[(p + q + r)(p - q + r)] + [(p + q - r)(q - p + r)]/[(p + q + r)(p + q - r)] + [(p - q + r)(q -p + r)]/[(p + q + r)(q - p + r)]
⇒ [(p + q - r)]/[(p + q + r)] + [q - p + r)]/[(p + q + r)] + [(p - q + r)]/[(p + q + r)]
⇒ [(p + q - r)]/[(p + q + r)] + [q - p + r)]/[(p + q + r)] + [(p - q + r)]/[(p + q + r)]
⇒ (p + q + r)/(p + q + r)
⇒ 1.
The value is 1.
Shortcut Trick
Let put p = q = r = 1
So,
\(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\)
⇒ \(\rm\frac{1^2-(1-1)^2}{(1+1)^2-1^2}+\frac{1^2-(1-1)^2}{(1+1)^2-1^2}+\frac{1^2-(1-1)^2}{(1+1)^2-1^2}\)
⇒ \(\rm\frac{1-0}{(4-1)}+\frac{1-0}{(4-1)}+\frac{1-0}{(4-1)}\)
⇒ 1/3 + 1/3 + 1/3 = 1
Hence, The value is 1.
If (5x - 2y) ∶ (x - 2y) = 9 ∶ 17, then find the value of \(\rm \frac{9x}{13y}\).
Answer (Detailed Solution Below)
Fractions Question 12 Detailed Solution
Download Solution PDFGiven:
(5x - 2y) ∶ (x - 2y) = 9 ∶ 17
Calculation:
The given ratio can be written as:
(5x - 2y)/(x - 2y) = 9/17
17 × (5x - 2y) = 9 × (x - 2y)
85x - 34y = 9x - 18y
76x = 16y
x/y = 16/76
x/y = 4/19
9 × (4/19)/13 = 36/247
So, 9x/13y = 36/247.
Which of the following fractions is the largest?
Answer (Detailed Solution Below)
Fractions Question 13 Detailed Solution
Download Solution PDFGiven:
The fractions are 13/19, 25/ 31, 28/31, 70/79.
Calculation:
The values are-
13/19 = 0.68
25/31 = 0.80
28/31 = 0.90
70/79 = 0.88
∴ Option C is correct.
If \(\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{1}{{1{\rm{\;}} + {\rm{\;}}\frac{{\rm{x}}}{{1{\rm{\;}} - {\rm{\;x}}}}}}}}{\rm{\;}} = {\rm{\;}}1\), then find the value of 'x'.
Answer (Detailed Solution Below)
Fractions Question 14 Detailed Solution
Download Solution PDFGiven:
\(\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{1}{{1{\rm{\;}} + {\rm{\;}}\frac{{\rm{x}}}{{1{\rm{\;}} - {\rm{\;x}}}}}}}}{\rm{\;}} = {\rm{\;}}1\)
Calculation:
\(\Rightarrow {\rm{\;}}\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{{1 - {\rm{x}}}}{{1 - {\rm{x\;}} + {\rm{\;x}}}}}}{\rm{\;}} = {\rm{\;}}1 \)
\(\Rightarrow {\rm{\;}}\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}1 - {\rm{x}}}}{\rm{\;}} = {\rm{\;}}1\)
⇒ 5x/(2 – x) = 1
⇒ 5x = 2 – x
⇒ 6x = 2
⇒ x = 2/6
∴ The required value of x is 1/3.
What will come in place of question mark '?' in the following question?
\(5\frac{1}{6} - 3\frac{4}{9} + \ ? = \frac{7}{3} \times 4\frac{1}{6}\)
Answer (Detailed Solution Below)
Fractions Question 15 Detailed Solution
Download Solution PDFConcept Used:
Follow BODMAS rule to solve this question, as per the order given below,
Calculations:
Given expression is,
\(\Rightarrow 5\frac{1}{6} - 3\frac{4}{9} + ? = \frac{7}{3} \times 4\frac{1}{6}\)
\(\Rightarrow {\rm{\;}}\frac{{31}}{6} - \frac{{31}}{9} + ? = \frac{7}{3} \times \frac{{25}}{6}\)
\(\Rightarrow 31\left( {\frac{1}{6} - \frac{1}{9}} \right) + \;? = \left( {\frac{{175}}{{18}}} \right)\)
\(\Rightarrow {\rm{\;}}31(\frac{3}{{54}}) + ? = \frac{{175}}{{18}}\)
\(\Rightarrow {\rm{\;}}\frac{{31}}{{18}} + ? = \frac{{175}}{{18}}\)
⇒ ? = 144/18
⇒ ? = 8