Vector Algebra MCQ Quiz - Objective Question with Answer for Vector Algebra - Download Free PDF
Last updated on Jun 14, 2025
Latest Vector Algebra MCQ Objective Questions
Vector Algebra Question 1:
Let \(\vec{a},\vec{b} ,(\vec{a}\times\vec{b})\) be unit vectors. What is \(\vec{a}.\vec{b}\)
Answer (Detailed Solution Below)
Vector Algebra Question 1 Detailed Solution
Calculation:
Given,
The vectors \(\vec{a},\vec{b} ,(\vec{a}\times\vec{b})\) are unit vectors.
Since \(\vec a\) and \(\vec{b}\) are unit vectors, we know:
\( |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 \).
The magnitude of the cross product \(( \vec{a} \times \vec{b} )\) is given by:
\( |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta = 1 \times 1 \times \sin \theta = \sin \theta \).
Since \( ( |\vec{a} \times \vec{b}| = 1 \), we have:
\( \sin \theta = 1 \), so \(\theta = 90^\circ \), meaning \(\vec a \) and \( \vec{b} \) are perpendicular.
The dot product \( ( \vec{a} \cdot \vec{b} )\) is:
\( \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = 1 \times 1 \times \cos 90^\circ = 0 \).
∴ The value of\(( \vec{a} \cdot \vec{b} ) \) is 0.
Hence, the correct answer is Option 1.
Vector Algebra Question 2:
The position vectors of three points A, B and C respectively, where \(\vec{a} ,\vec{b} \) and \(\vec{c} \) respectively, where \(\vec{c} = (\cos^2 \theta)\vec{a}+(\sin^2 \theta)\vec{b}\). What is \((\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a})\) equal to?
Answer (Detailed Solution Below)
Vector Algebra Question 2 Detailed Solution
Calculation:
Given,
The position vectors of points A, B, and C are \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) respectively, and \( \vec{c} = \cos^2 \theta \, \vec{a} + \sin^2 \theta \, \vec{b} \).
The expression to evaluate is: \( (\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) \).
First, substitute \( \vec{c} \) into the equation:
\( (\vec{a} \times \vec{b}) + (\vec{b} \times (\cos^2 \theta \, \vec{a} + \sin^2 \theta \, \vec{b})) + (\cos^2 \theta \, \vec{a} + \sin^2 \theta \, \vec{b}) \times \vec{a} \).
Using the distributive property of the cross product:
\( (\vec{a} \times \vec{b}) + \left[ (\vec{b} \times \cos^2 \theta \, \vec{a}) + (\vec{b} \times \sin^2 \theta \, \vec{b}) \right] + \left[ (\cos^2 \theta \, \vec{a} \times \vec{a}) + (\sin^2 \theta \, \vec{b} \times \vec{a}) \right] \).
Since \( \vec{b} \times \vec{b} = 0 \) and \( \vec{a} \times \vec{a} = 0 \), we are left with:
\( (\vec{a} \times \vec{b}) + \cos^2 \theta \, (\vec{b} \times \vec{a}) + \sin^2 \theta \, (- \vec{a} \times \vec{b}) \).
Substitute \( \vec{b} \times \vec{a} = - (\vec{a} \times \vec{b}) \) into the expression:
\( (\vec{a} \times \vec{b}) + \cos^2 \theta \, (- \vec{a} \times \vec{b}) + \sin^2 \theta \, (- \vec{a} \times \vec{b}) \).
Factor out \( \vec{a} \times \vec{b} \):
\( \vec{a} \times \vec{b} \left[ 1 - \cos^2 \theta - \sin^2 \theta \right] \).
Since \( \cos^2 \theta + \sin^2 \theta = 1 \), the expression becomes:
\( \vec{a} \times \vec{b} [1 - 1] = 0 \).
∴ The final result is \( \vec{0} \).
Hence, the correct answer is option 1.
Vector Algebra Question 3:
The position vectors of three points A, B and C are a, b and c respectively such that \(\vec{3a}-\vec{4b}+\vec{c}=\vec{0}\) What is AB:BC equal to?
Answer (Detailed Solution Below)
Vector Algebra Question 3 Detailed Solution
Calculation:
Given,
\( 3\vec{a} - 4\vec{b} + \vec{c} = 0 \)
\( \vec{c} = 4\vec{b} - 3\vec{a} \)
The vector\(\overrightarrow{AB} \) is:
\( \overrightarrow{AB} = \vec{b} - \vec{a} \)
The vector \(\overrightarrow{BC} \) is:
\( \overrightarrow{BC} = \vec{c} - \vec{b} \)
Substituting \(\vec{c} = 4\vec{b} - 3\vec{a} \):
\( \overrightarrow{BC} = (4\vec{b} - 3\vec{a}) - \vec{b} \)
\( \overrightarrow{BC} = 3\vec{b} - 3\vec{a} \)
Step 4: Now, \(\overrightarrow{BC} = 3(\vec{b} - \vec{a}) \), which gives:
\( AB : BC = 1 : 3 \)
∴ The correct ratio is AB : BC = 1 : 3 ,
Hence, the correct answer is Option 2.
Vector Algebra Question 4:
Consider the following statements in respect of a vector :
I. d is coplanar with a and b.
II. d is perpendicular to c.
Which of the statements given above is/are correct?
Answer (Detailed Solution Below)
Vector Algebra Question 4 Detailed Solution
Calculation:
Given,
The vector \( \vec{d} = (\vec{a} \times \vec{b}) \times \vec{c} \)
Statement I: \( \vec{d} \) is coplanar with \( \vec{a} \) and \( \vec{b} \).
We use the vector triple product identity: \( (\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} \).
This shows that \( \vec{d} \) is a linear combination of \( \vec{a} \) and \( \vec{b} \), hence \( \vec{d} \) is coplanar with \( \vec{a} \) and \( \vec{b} \).
Therefore, Statement I is correct.
Statement II: \( \vec{d} \) is perpendicular to \( \vec{c} \).
To check this, compute the dot product \( \vec{d} \cdot \vec{c} \). Using the vector triple product identity, we find:
\( \vec{d} \cdot \vec{c} = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{c}) - (\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{c}) = 0 \),
which means \( \vec{d} \) is perpendicular to \( \vec{c} \).
Therefore, Statement II is correct.
∴ Both Statement I and Statement II are correct.
Hence, the correct answer is option 3.
Vector Algebra Question 5:
A line makes angles α, β and γ with the positive directions of the coordinate axes. If , then what is \(\vec{a}.\vec{b}\) equal to?
Answer (Detailed Solution Below)
Vector Algebra Question 5 Detailed Solution
Calculation:
Given,
\( \cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1 \)
Using the identity \( \cos^2(x) = 1 - \sin^2(x) \), we substitute:
\( (1 - \sin^2(\alpha)) + (1 - \sin^2(\beta)) + (1 - \sin^2(\gamma)) = 1 \)
Simplifying the equation:
\( 3 - (\sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma)) = 1 \)
Rearrange to isolate the sine terms:
\( \sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma) = 2 \)
Now, calculate the dot product:
\( \vec{a} \cdot \vec{b} = \sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma) = 2 \)
∴ The value of \( \vec{a} \cdot \vec{b} \)is 2.
Hence, the correct answer is Option 4.
Top Vector Algebra MCQ Objective Questions
If the vectors \(\widehat i + 2\widehat j + 3\widehat k\), \(λ \widehat i + 4\widehat j + 7\widehat k\), \(- 3\widehat i - 2\widehat j - 5\widehat k\) are collinear if λ equals
Answer (Detailed Solution Below)
Vector Algebra Question 6 Detailed Solution
Download Solution PDFConcept:
Conditions of collinear vector:
- Three points with position vectors \(\vec a,\;\vec b\;and\;\vec c\) are collinear if and only if the vectors \(\left( {\vec a - \vec b} \right)\) and \(\left( {\vec a\; - \vec c} \right)\) are parallel. ⇔ \(\left( {\vec a - \vec b} \right) = λ \left( {\vec a\; - \vec c} \right)\)
- If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)
Solution:
We know that, If the points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)
Given \(\widehat i + 2\widehat j + 3\widehat k\), \(λ \widehat i + 4\widehat j + 7\widehat k\), \(- 3\widehat i - 2\widehat j - 5\widehat k\) are collinear
∴ \(\left| {\begin{array}{*{20}{c}} { 1}&{ 2}&3\\ λ&4&7\\ -3&-2&-5 \end{array}} \right| = 0\)
⇒ 1 (-20 + 14) – (2) (-5λ + 21) + 3 (-2λ + 12) = 0
⇒ -6 + 10λ – 42 - 6λ + 36 = 0
⇒ 4λ = 12
∴ λ = 3
What is the value of p for which the vector p(2î - ĵ + 2k̂) is of 3 units length?
Answer (Detailed Solution Below)
Vector Algebra Question 7 Detailed Solution
Download Solution PDFConcept:
Let \(\rm {\rm{\vec a}} = {\rm{x\;\vec i}} + {\rm{y\;\vec j}} + {\rm{z\;\vec k}}\) then magnitude of the vector of a = \(\left| {{\rm{\vec a}}} \right| = {\rm{\;}}\sqrt {{{\rm{x}}^2} + {\rm{\;}}{{\rm{y}}^2} + {{\rm{z}}^2}} \)
Calculation:
Let \(\rm \vec{a}\) = p(2î - ĵ + 2k̂)
Given, \(\left| {{\rm{\vec a}}} \right| = 3\)
⇒ \(\rm \sqrt{4p^2 + p^2+4p^2} = 3\)
⇒ \(\rm \sqrt{9p^2} = 3\)
⇒ 3p = 3
∴ p = 1
Find the value of \(\rm \vec{a} \times \vec{a}\)
Answer (Detailed Solution Below)
Vector Algebra Question 8 Detailed Solution
Download Solution PDFConcept:
Dot product of two vectors is defined as:
\({\rm{\vec A}}{\rm{.\vec B = }}\left| {\rm{A}} \right|{\rm{ \times }}\left| {\rm{B}} \right|{\rm{ \times cos}}\;{\rm{\theta }}\)
Cross/Vector product of two vectors is defined as:
\({\rm{\vec A \times \vec B = }}\left| {\rm{A}} \right|{\rm{ \times }}\left| {\rm{B}} \right|{\rm{ \times sin}}\;{\rm{\theta }} \times \rm \hat{n}\)
where θ is the angle between \({\rm{\vec A}}\;{\rm{and}}\;{\rm{\vec B}}\)
Calculation:
To Find: Value of \(\rm \vec{a} \times \vec{a}\)
Here angle between them is 0°
\({\rm{\vec a \times \vec a = }}\left| {\rm{a}} \right|{\rm{ \times }}\left| {\rm{a}} \right|{\rm{ \times sin}}\;{\rm{0 }} \times \rm \hat{n}=0\)
If A = \(\rm 5 \hat i-2\hat j +4\hat k\) and B = \(\rm \hat i+3\hat j -7\hat k\) , then what is the value of \(\rm |\vec{AB}|\)?
Answer (Detailed Solution Below)
Vector Algebra Question 9 Detailed Solution
Download Solution PDFConcept:
If \(\rm \vec A = x \hat i-y\hat j +z\hat k\), then \(\rm |\vec A| = \sqrt {x^2 +y^2+z^2}\)
Calculation:
Given A = \(\rm 5 \hat i-2\hat j +4\hat k\) and B = \(\rm \hat i+3\hat j -7\hat k\)
\(\rm \vec{AB} = \vec B - \vec A\)
\(\rm \vec{AB}\) = \(\rm \hat i+3\hat j -7\hat k - (5 \hat i-2\hat j +4\hat k)\)
\(\rm \vec{AB}\) = \(\rm -4\hat i+5\hat j -11\hat k\)
Now \(\rm |\vec {AB}| = \sqrt{(-4)^2 +5^2+(-11)^2}\)
\(\rm |\vec {AB}| = \sqrt{16 +25+121}\)
\(\rm |\vec {AB}| = \sqrt{162}\) = 9√2
The point with position vectors 5î - 2ĵ, 8î - 3ĵ, aî - 12ĵ are collinear if the value of a is
Answer (Detailed Solution Below)
Vector Algebra Question 10 Detailed Solution
Download Solution PDFConcept:
Three or more points are collinear, if slope of any two pairs of points is same.
The slope of a line passing through the distinct points (x1, y1) and (x2, y2) is \(\rm \frac{y_2 -y_1 }{x_2-x_1}\)
Calculation:
Here, \(\rm 5\hat i-2\hat j, 8\hat i-3\hat j, a\hat i-12\hat j \)
Let, A = (5, -2), B = (8, -3), C = (a, -12)
Now, slope of AB = Slope of BC = Slope of AC ....(∵ points are collinear)
\(\rm \frac{-3-(-2)}{8-5}=\frac{-12-(-3)}{a-8}\\ ⇒ \frac{-1}{3}=\frac{-9}{a-8}\)
⇒ a - 8= 27
⇒ a = 27 + 8 = 35
Hence, option (4) is correct.
If \(4\hat i + \hat j - 3\hat k\) and \(p\hat i + q\hat j - 2\hat k\) are collinear vectors, then what are the possible values of p and q respectively?
Answer (Detailed Solution Below)
Vector Algebra Question 11 Detailed Solution
Download Solution PDFConcept:
For two vectors \(\vec m \ and \ \vec n \) to be collinear, \(\vec m\; = \;λ \vec n\) where λ is a scalar.
Calculation:
Given that, the vectors \(4\hat i + \hat j - 3\hat k\) & \(p\hat i + q\hat j - 2\hat k\) are collinear.
Since two vectors \(\vec m \ and \ \vec n \) are collinear then \(\vec m\; = \;λ \vec n\) where λ is a scalar.
⇒ \(4\hat i + \hat j - 3\hat k\;\ = λ × (\;p\hat i + q\hat j - 2\hat k)\)
⇒ \(4\hat i + 1\hat j - 3\hat k\;\ = λ p \hat i + λq \hat j - 2λ \hat k\)
⇒ λp = 4, λq = 1 and -2λ = -3
⇒ λ = 3/2
So, by substituting λ = 3/2 in λp = 4 and λq = 1, we get
⇒ (3/2)p = 4 and (3/2)q = 1
⇒ p = 8/3 and q = 2/3
∴ \(\frac{8}{3}, \frac{2}{3}\)is the correct answer.
The sine of the angle between vectors \(\vec a = 2\hat i - 6\hat j - 3\hat k\) and \(\vec b = 4\hat i + 3\hat j - \hat k\) is
Answer (Detailed Solution Below)
Vector Algebra Question 12 Detailed Solution
Download Solution PDFConcept:
If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right|\cos \theta\)
Calculation:
Given: \(\vec a = 2\hat i - 6\hat j - 3\hat k\) and \(\vec b = 4\hat i + 3\hat j - \hat k\)
\(\left| {\vec a} \right| = 7,\;\left| {\vec b} \right| = \sqrt {26} \;and\;\vec a \cdot \;\vec b = - 7\)
\(\Rightarrow \;\cos \theta = \frac{{\vec a \cdot \;\vec b}}{{\left| {\vec a} \right| \times \left| {\vec b} \right|}} = \frac{{ - \;7}}{{7 \times \sqrt {26} }} = - \frac{1}{{\sqrt {26} }}\)
\( \Rightarrow \;{\sin ^2}\theta = 1 - {\cos ^2}\theta = 1 - \frac{1}{{26}} = \frac{{25}}{{26}}\)
\(\Rightarrow \;\sin \theta = \frac{5}{{\sqrt {26} }}\)If \(\vec a + \vec b + \vec c = \vec 0,\;|\vec a| = 3,\;|\vec b| = 5\) and \(|\vec c| = 7\), find the angle between \(\vec a\) and \(\vec b\).
Answer (Detailed Solution Below)
Vector Algebra Question 13 Detailed Solution
Download Solution PDFConcept:
Let the angle between \(\vec a\) and \(\vec b\)is \(\rm \theta\)
\(\rm \vec a.\vec b = 2ab cos\;\theta\)
Calculations:
consider, the angle between \(\vec a\) and \(\vec b\)is \(\rm \theta\)
Given, \(\vec a + \vec b + \vec c = \vec 0 \)
⇒\(\vec a + \vec b = - \vec c \)
⇒\(\rm |\vec a + \vec b| = |- \vec c |\)
Squaring on both side, we get
⇒\(\rm |\vec a + \vec b|^2 = |- \vec c |^2\)
⇒\(\rm |\vec a|^2 +2\;\vec a.\vec b+ |\vec b|^2 = |- \vec c |^2\)
⇒\(\rm |\vec a|^2 +|\vec b|^2+2\;ab\cos\;\theta = |- \vec c |^2\)
⇒\(\rm (3)|^2 +(5)^2+2\;(3)(5)\cos\;\theta = (7)^2\)
⇒\(\rm 30\cos\;\theta = 15\)
⇒\(\rm \cos\;\theta = \dfrac 12\)
⇒ \(\rm \theta\) = π / 3
Hence, If \(\vec a + \vec b + \vec c = \vec 0,\;|\vec a| = 3,\;|\vec b| = 5\) and \(|\vec c| = 7\), then the angle between \(\vec a\) and \(\vec b\)is π / 3
If \(\rm \vec{i} - a\vec{j} + 5\vec{k}\)and \(\rm 3\vec{i} - 6\vec{j} + b\vec{k}\) are parallel vectors then b is equal to?
Answer (Detailed Solution Below)
Vector Algebra Question 14 Detailed Solution
Download Solution PDFConcept:
If \({\rm{\vec a\;and\;\vec b}}\) are two vectors parallel to each other then \({\rm\vec{a} = λ \vec{b}}\) or \(\rm \vec{a} × \vec{b} =0\)
Calculation:
Given:
\(\rm \vec{i} - a\vec{j} + 5\vec{k}\) and \(\rm 3\vec{i} - 6\vec{j} + b\vec{k}\) are parallel vectors,
Therefore, \(\rm \vec{i} - a\vec{j} + 5\vec{k}= λ (\rm 3\vec{i} - 6\vec{j} + b\vec{k})\)
Equating the coefficient of \(\rm \vec{i},\vec{j} \;and\; \vec{k}\)
⇒ 1 = 3λ, ∴ λ = 1/3
⇒ -a = -6λ
⇒ 5 = bλ .... (1)
Put the value of λ in equation (1), we get
5 = b × (1/3)
So, b = 15
Let \(\rm \vec a =\hat i +\hat j +\hat k,\; \vec b =\hat i -\hat j + \hat k\) and c = î - ĵ - k̂ be three vectors. A vector \(\rm \vec v\) in the plane of \(\rm \vec a\) and \(\rm \vec b\) whose projection on \(\rm \frac {\vec c} {|\vec c|}\) is \(\frac 1 {\sqrt 3},\) is
Answer (Detailed Solution Below)
Vector Algebra Question 15 Detailed Solution
Download Solution PDFCalculation:
\(\rm \vec a =\hat i +\hat j +\hat k,\; \vec b =\hat i -\hat j + \hat k\) and c = î - ĵ - k̂
Given: vector \(\rm \vec v\) in the plane of \(\rm \vec a\) and \(\rm \vec b\)
Therefore, \(\rm \vec v = \vec a + λ \vec b\)
⇒ \(\rm \vec v =(\hat i +\hat j +\hat k ) \; + λ (\hat i -\hat j + \hat k)\)
= (1 + λ)î + (1 - λ)ĵ + (1 + λ)k̂ .... (1)
Projection of \(\rm \vec v\) on \(\rm \frac {\vec c} {|\vec c|}=\frac 1 {\sqrt 3}\)
⇒ \(\rm \vec v=\rm \frac {\vec c} {|\vec c|}=\frac 1 {\sqrt 3}\)
⇒ \(\frac {(1 + λ) - (1 - λ) - (1 + λ)}{\sqrt3} = \frac {1}{\sqrt 3}\)
⇒ -(1 - λ) = 1
∴ λ = 2
Now, put the value of λ in equation (1), we get
\(\rm \vec v\) = 3î - ĵ + 3k̂