Vector Algebra MCQ Quiz in मल्याळम - Objective Question with Answer for Vector Algebra - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 9, 2025

നേടുക Vector Algebra ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Vector Algebra MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Vector Algebra MCQ Objective Questions

Top Vector Algebra MCQ Objective Questions

Vector Algebra Question 1:

What is \(\rm \left( {2\vec a - 3\vec b} \right) \times \left( {2\vec a + 3\vec b} \right)\)equal to?

  1. \(\vec 0\)
  2. \(\rm \vec a \times \vec b\)
  3. \(\rm 12\left( {\vec a \times \vec b} \right)\)
  4. \(\rm 4 {\left| {\vec a} \right|^2} - 9{\left| {\vec b} \right|^2}\)

Answer (Detailed Solution Below)

Option 3 : \(\rm 12\left( {\vec a \times \vec b} \right)\)

Vector Algebra Question 1 Detailed Solution

Concept:  

\(\rm \overrightarrow{a} \times \overrightarrow{a} = 0\)

\(\rm \overrightarrow{a} \times \overrightarrow{b} = - \overrightarrow{b} \times \overrightarrow{a} \)

Calculation:

Given

\(\rm = \left( {2\vec a - 3\vec b} \right) \times \left( {2\vec a + 3\vec b} \right)\)

\(\rm = 2\overrightarrow{a} \times 2\overrightarrow{a} + 2\overrightarrow{a} \times 3\overrightarrow{b} - 3\overrightarrow{b} \times 2\overrightarrow{a} - 3\overrightarrow{b} \times 3\overrightarrow{b}\)

\(\rm = 0 + 2\overrightarrow{a} \times 3\overrightarrow{b} - 3\overrightarrow{b} \times 2\overrightarrow{a} - 0\)

\(\rm = 6 \: (\overrightarrow{a} \times \overrightarrow{b}) + 6\: (\overrightarrow{a} \times \overrightarrow{b} )\)

\(\rm = 12\: (\overrightarrow{a} \times \overrightarrow{b}) \)

 

Additional Information

Properties of Scalar Product

\(\rm \overrightarrow{a}.\overrightarrow{a} = \left |\overrightarrow{a} \right |^{2}\)

\(\rm \overrightarrow{a}.\overrightarrow{b} = \overrightarrow{b}.\overrightarrow{a}\) (Scalar product is commutative)

\(\rm \overrightarrow{a}.\overrightarrow{0} = 0\)

\(\rm \overrightarrow{a}.(\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} . \overrightarrow{b} + \overrightarrow{a} . \overrightarrow{c}\) (Distributive of scalar product over addition)

In terms of orthogonal coordinates for mutually perpendicular vectors, it is seen that \(\rm \overrightarrow{i}. \overrightarrow{i} = \overrightarrow{j}. \overrightarrow{j} = \overrightarrow{k} . \overrightarrow{k} =1\)

Properties of Vector Product

\(\rm \overrightarrow{a} \times \overrightarrow{a} = 0\)

\(\rm \overrightarrow{a} \times \overrightarrow{b} = - \overrightarrow{b} \times \overrightarrow{a} \) (non-commutative)

 \(\rm \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}\) (Distributive of vector product over addition)

\(\rm \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0\)

\(\rm \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k} ,\overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j} \)

Vector Algebra Question 2:

What is \(\left( {\vec a - \vec b} \right) \times \left( {\vec a + \vec b} \right)\)equal to?

  1. \(\vec 0\)
  2. \(\vec a \times \vec b\)
  3. \(2\left( {\vec a \times \vec b} \right)\)
  4. \({\left| {\vec a} \right|^2} - {\left| {\vec b} \right|^2}\)

Answer (Detailed Solution Below)

Option 3 : \(2\left( {\vec a \times \vec b} \right)\)

Vector Algebra Question 2 Detailed Solution

Concept:

  • \(\vec a\) and \(\vec b\) are two vectors parallel to each other ⇔  \(\vec a \times \vec b = 0\)
  • Cross product of parallel vectors are zero ⇔  \(\vec a \times \vec a = 0,{\rm{\;}}\vec b \times \vec b = 0{\rm{\;and\;}}\vec c \times \vec c = 0\)
  • A cross or vector product is not commutative ⇔ \(\vec a \times \vec b = - {\rm{\;}}\vec b \times \vec a\)


Calculation:

We have to find the value of \(\left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right)\)

\(\Rightarrow \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) = {\rm{\;\vec a\;}} \times {\rm{\;\vec a}} + {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} - {\rm{\;\vec b\;}} \times {\rm{\;\vec a}} - {\rm{\;\vec b\;}} \times {\rm{\;\vec b}}\)

We know that \({\rm{\vec a\;}} \times {\rm{\;\vec b}} = - {\rm{\;\vec b\;}} \times {\rm{\;\vec a}}\)

\(\Rightarrow \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) = {\rm{\;}}0 + {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} + {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} - {\rm{\;}}0\)                \(\because \left( {{\rm{\vec a\;}} \times {\rm{\;\vec a}} = \;{\rm{\vec b\;}} \times {\rm{\;\vec b}} = 0} \right)\) 

\(\Rightarrow \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) = {\rm{\;}}2\;\left( {{\rm{\;\vec a\;}} \times {\rm{\;\vec b}}} \right)\)

∴ Option 3 is correct.

Vector Algebra Question 3:

If \({\rm{\vec a}},{\rm{\vec b}},{\rm{\vec c}}\) are mutually perpendicular vectors of equal magnitude, then the angle between \({\rm{\vec a}} + {\rm{\vec b}} + {\rm{\vec c}}\) and \({\rm{\vec a}}\) is

  1. cos−1 (1/3)
  2. cos−1 (1/√3)
  3. 90°

Answer (Detailed Solution Below)

Option 2 : cos−1 (1/√3)

Vector Algebra Question 3 Detailed Solution

Concept:

Dot Product: it is also called the inner product or scalar product

  • Let the two vectors be \(\vec a\;{\rm{and\;}}\vec b\) then dot Product of two vector: \(\vec a.\;\vec b = \;\left| {\bf{a}} \right|\left| {\bf{b}} \right|\;{\bf{cos}}\;{\bf{\theta }}\)  Where, |\(\vec a\)| = Magnitude of vectors a and |\(\vec b\)| = Magnitude of vectors b and θ is angle between a and b 
  • \(\vec i.\vec i = \vec j.\vec j = \vec k.\vec k = 1{\rm{\;and\;}}\overrightarrow {\;i} .\vec j = \vec j.\vec i = \vec i.\vec k = \vec k.\vec i = \vec j.\vec k = \vec k.\vec j = 0\)

 

Calculation:

Let \(\vec a = \vec i,\vec b = \vec j,\vec c = \vec k\)

\(\therefore \left( {{\rm{\vec a}} + {\rm{\vec b}} + {\rm{\vec c}}} \right).{\rm{\vec a}} = \left| {{\rm{\vec a}} + {\rm{\vec b}} + {\rm{\vec c}}} \right|\left| {{\rm{\vec a}}} \right|\cos \theta \)

\(\Rightarrow \left( {{\rm{\vec i}} + \vec j + {\rm{\vec k}}} \right).{\rm{\vec i}} = \left| {{\rm{\vec i}} + \vec j + {\rm{\vec k}}} \right|\left| {{\rm{\vec i}}} \right|\cos \theta \)

⇒ 1 + 0 + 0 = √3 × 1 × cos θ

⇒ cos θ = 1/√3

∴ θ = cos−1 (1/√3)

Vector Algebra Question 4:

What is the value of k for which the vector k(2î -  ĵ -  2k̂) is of 6 units length?

  1. 1
  2. 2
  3. 3
  4. 4

Answer (Detailed Solution Below)

Option 2 : 2

Vector Algebra Question 4 Detailed Solution

Concept:

Length of the vector \(\rm a\hat{i} + b\hat{j} + c\hat{k} \) from origin is \(\rm \sqrt{a^{2} + b^{2} + c^{2}}\)

Calculation:

Length of the vector k(2î -  ĵ -  2k̂) from origin is 

\(\rm \sqrt{(2k)^{2} + (-k)^{2} + (-2k)^{2}}\)

\(\rm \sqrt{4k^{2} + k^{2} + 4k^{2}}\) 

\(\rm \sqrt{9k^{2} }\) 

= 3k

Length is 6 units given

3k = 6

k = 6/3

k = 2

Hence option 2 is correct.

Vector Algebra Question 5:

If a + b + c = 0, and |a| = 3, |b| = 5, |c| = 7, then what is the angle between a and b?

  1. -π 
  2. 60° 
  3. π 
  4. 120° 

Answer (Detailed Solution Below)

Option 2 : 60° 

Vector Algebra Question 5 Detailed Solution

Concept:

If θ is the angle between x and y then x.y = xycosθ 

 

Calculation:

GIven, a + b + c = 0

⇒ a + b = -c, squaring both sides we get

  (a + b)2 = (-c)2

⇒ |a + b|2 = |c|2

|a|2 + |b|2 +2|a||b|cosθ = |c|2, where θ = angle betwee a and b

Putting the values we get,

3+ 52 + 2× 3× 5 cosθ = 72

⇒ 9 + 25 + 30cosθ = 49

⇒ 30cosθ = 49 - 34 = 15

⇒ cosθ = \(1\over 2\)

∴ θ = 60° 

Vector Algebra Question 6:

If \(\hat{a}, \hat{b}, \hat{c}\), are unit vectors and \(\hat{a}+\hat{b}+\hat{c}=0\) then the value of of \(\hat{a}\cdot \hat{b}+\hat{b}\cdot \hat{c}+\hat{c}\cdot \hat{a}\) is :

  1. -3/2
  2. 0
  3. 2/3
  4. 1

Answer (Detailed Solution Below)

Option 1 : -3/2

Vector Algebra Question 6 Detailed Solution

Concept:

Dot Product: it is also called the inner product or scalar product

Let the two vectors are \(\rm \vec a\) and \(\rm \vec b\)

Dot Product of two vectors is given by:  \(\rm \vec a.{\rm{\;}}\vec b\) = |a||b| cos θ

Where |\(\rm \vec a\)| = Magnitudes of vectors a, |\(\rm \vec b\)| = Magnitudes of vectors b and θ is the angle between a and b

Formulas of Dot Product:

 \(\rm \vec i.\vec i = \vec j.\vec j = \vec k.\vec k = 1\)

\(\rm \vec i.\vec j = \vec j.\vec i = \vec i.\vec k = \vec k.\vec i =\vec j.\vec k= \vec k.\vec j = 0\)

Calculation:

Given that,

(â + b̂ + ĉ) = 0    ----(1)

We know that,

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

⇒ (â + b̂ + ĉ)2 = â ⋅ â + b̂ ⋅ b̂ + ĉ ⋅ ĉ + 2(â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) 

From equation (1), we get

⇒ (1 + 1 + 1) + 2 (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = 0

∴ (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = - 3/2        

Vector Algebra Question 7:

If â and b̂ are unit vectors such that â + 2b̂ and 5â - 4b̂ are perpendicular to each other, then the angle between â and b̂ is

  1. π/4
  2. \(\cos ^{-1} \left( \dfrac{1}{3}\right)\)
  3. \(\cos ^{-1} \left( \dfrac{2}{7}\right)\)
  4. π/3

Answer (Detailed Solution Below)

Option 4 : π/3

Vector Algebra Question 7 Detailed Solution

Concept:

For unit vectors:

\(|\vec{a}|=\vec{a}\cdot\vec{a}=1\)

\(|\vec{b}|=\vec{b}\cdot\vec{b}=1\)

When two vectors \(\vec{A}\)and \(\vec{B}\) are perpendicular to each other then the dot product is zero i.e.

\(\vec{A}\cdot\vec{B}=0\)

Calculation:

Given:

\(\vec{A}=â + 2b̂\)\(\vec{B}=5â - 4b̂\)

\(\vec{A}\cdot\vec{B}=0\)  [∵ perpendicular to each other]

\((â + 2b̂)\cdot(5â - 4b̂)=0\)

\(5\vec{a}\cdot\vec{a}-4\vec{a}\cdot\vec{b}+10\vec{a}\cdot\vec{b}-8\vec{b}\cdot\vec{b}=0\)

\(-3+6\vec{a}\cdot\vec{b}=0\)

\(\vec{a}\cdot\vec{b}=\frac{3}{6}=\frac{1}{2}\)

\(|\vec{a}|\cdot|\vec{b}|\cdot\cos θ=\frac{1}{2}\)

∴ θ = π/3

Vector Algebra Question 8:

What is the value of λ for which the vectors \(\rm 2\hat i - 5\hat j - \hat k\) and \(\rm -\hat i + 4 \hat j + \lambda\hat k\) are perpendicular?

  1. 21
  2. -18
  3. -22
  4. 22

Answer (Detailed Solution Below)

Option 3 : -22

Vector Algebra Question 8 Detailed Solution

Concept:

If vectors \(\rm \vec a\;and\;\vec b\) are perpendicular then \(\rm \vec a \cdot \;\vec b = 0\)

 

Calculation:

Given: \(\rm 2\hat i - 5\hat j - \hat k\) and \(\rm -\hat i + 4 \hat j + λ\hat k\) are perpendicular

Let \(\rm \vec a = 2\hat i - 5\hat j - \hat k\) and \(\rm \vec b = -\hat i + 4 \hat j + λ\hat k\)

We know that, If vectors \(\rm \vec a\;and\;\vec b\) are perpendicular then \(\rm \vec a \cdot \;\vec b = 0\)

\(\rm \vec a \cdot \vec b = ( 2\hat i - 5\hat j - \hat k) \cdot (-\hat i + 4 \hat j + λ\hat k) = 0\)

⇒ -2 - 20 - λ = 0 

⇒ -22 - λ = 0 

∴ λ = -22

Vector Algebra Question 9:

If \(\rm x\vec{i} - 2\vec{j} + 3\vec{k}\) and \(\rm 2\vec{i} - 4\vec{j} + y\vec{k}\) are parallel vectors then x is equal to?

  1. 3
  2. 2
  3. -1
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Vector Algebra Question 9 Detailed Solution

Concept:

If \({\rm{\vec a\;and\;\vec b}}\) are two vectors parallel to each other then \({\rm\vec{a} = λ \vec{b}}\) or \(\rm \vec{a} × \vec{b} =0\)

Calculation:

Given:

 \(\rm x\vec{i} - 2\vec{j} + 3\vec{k}\) and \(\rm 2\vec{i} - 4\vec{j} + y\vec{k}\) are parallel vectors,

Therefore, \(\rm x\vec{i} - 2\vec{j} + 3\vec{k} = λ (\rm 2\vec{i} - 4\vec{j} + y\vec{k})\)

Equating the coefficient of \(\rm \vec{i},\vec{i} \;and\; \vec{k}\)

⇒ x = 2λ                    .... (1)

⇒ -2 = -4λ 

∴ λ = 1/2

Put the value of λ in equation (1), we get

x = 2 × (1/2)

So, x = 1

Vector Algebra Question 10:

If the vectors \(a\hat i + \hat j + \hat k,\;\hat i + b\hat j + \hat k\) and \(\hat i + \hat j + c\hat k\;\left( {a,\;b,\;c \ne 1} \right)\) are coplanar, then the value of \(\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}}\) is equal to

  1. 1
  2. 2
  3. a + b + c
  4. abc

Answer (Detailed Solution Below)

Option 1 : 1

Vector Algebra Question 10 Detailed Solution

Concept:

Scaler triple product of the vectors:

The scaler triple product of the vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) is given by:

\({\rm{\bar A}} \cdot \left[ {{\rm{\bar B}} \times {\rm{\bar C}}} \right] = {\rm{\;}}\left| {\begin{array}{*{20}{c}} {{{\rm{x}}_1}}&{{{\rm{y}}_1}}&{{{\rm{z}}_1}}\\ {{{\rm{x}}_2}}&{{{\rm{y}}_2}}&{{{\rm{z}}_2}}\\ {{{\rm{x}}_3}}&{{{\rm{y}}_3}}&{{{\rm{z}}_3}} \end{array}} \right|\)

Coplaner vectors:

Three vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) are said to be coplaner if the scaler triple product \({\bf{\bar A}} \cdot \left[ {{\bf{\bar B}} \times {\bf{\bar C}}} \right] = 0.\)

 

Solution:

Let the given vectors be \({\rm{\bar A}} = {\rm{a}}\hat i + \;\hat j + {\rm{\;}}\hat k,\;\bar B = \;\hat i + \;b\hat j + \hat k\) and \({\rm{\bar C}} = {\rm{\;}}\hat i + \;\hat j + {\rm{c}}\hat k\).

It is given that the vectors are coplaner therefore the scaler triple product \({\rm{\bar A}} \cdot \left[ {{\rm{\bar B}} \times {\rm{\bar C}}} \right] = 0.\)

Therefore,

\(\left| {\begin{array}{*{20}{c}} {\rm{a}}&1&1\\ 1&{\rm{b}}&1\\ 1&1&{\rm{c}} \end{array}} \right| = 0\)

Perform the coloumn operation C1 – C2 as follows:

\(\left| {\begin{array}{*{20}{c}} {{\rm{a}} - 1}&1&1\\ {1 - {\rm{b}}}&{\rm{b}}&1\\ 0&1&{\rm{c}} \end{array}} \right| = 0\)

Now perform another coloum operation C2 – C3 as follows:

\(\left| {\begin{array}{*{20}{c}} {{\rm{a}} - 1}&0&1\\ {1 - {\rm{b}}}&{{\rm{b}} - 1}&1\\ 0&{1 - {\rm{c}}}&{\rm{c}} \end{array}} \right| = 0\)

Take (1 - a)(1 - b)(1 - c) common. Note that it is given that a,b,c ≠ 0 therefore this action is jstified.

\(\left( {1 - {\rm{a}}} \right)\left( {1 - {\rm{b}}} \right)\left( {1 - {\rm{c}}} \right)\left| {\begin{array}{*{20}{c}} { - 1}&0&{\frac{1}{{1 - {\rm{a}}}}}\\ 1&{ - 1}&{\frac{1}{{1 - {\rm{b}}}}}\\ 0&1&{\frac{{\rm{c}}}{{1 - {\rm{c}}}}} \end{array}} \right| = 0\)

Since a, b, c ≠ 0 therefore (1 - a)(1 - b)(1 - c) ≠ 0.Therefore the determinant has to be zero.

\( - 1\left( {\frac{{\rm-{c}}}{{1 - {\rm{c}}}} - {\rm{}}\frac{1}{{1 - {\rm{b}}}}} \right) + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)

\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{{\rm{c}}}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)

Simplify the above expression as follows:

\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} - {\rm{\;}}1 + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)

\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 1\)

Therefore, \(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 1\).
Get Free Access Now
Hot Links: teen patti master game teen patti master king lucky teen patti teen patti gold