Vector Algebra MCQ Quiz in मल्याळम - Objective Question with Answer for Vector Algebra - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 9, 2025
Latest Vector Algebra MCQ Objective Questions
Top Vector Algebra MCQ Objective Questions
Vector Algebra Question 1:
What is \(\rm \left( {2\vec a - 3\vec b} \right) \times \left( {2\vec a + 3\vec b} \right)\)equal to?
Answer (Detailed Solution Below)
Vector Algebra Question 1 Detailed Solution
Concept:
\(\rm \overrightarrow{a} \times \overrightarrow{a} = 0\)
\(\rm \overrightarrow{a} \times \overrightarrow{b} = - \overrightarrow{b} \times \overrightarrow{a} \)
Calculation:
Given
\(\rm = \left( {2\vec a - 3\vec b} \right) \times \left( {2\vec a + 3\vec b} \right)\)
\(\rm = 2\overrightarrow{a} \times 2\overrightarrow{a} + 2\overrightarrow{a} \times 3\overrightarrow{b} - 3\overrightarrow{b} \times 2\overrightarrow{a} - 3\overrightarrow{b} \times 3\overrightarrow{b}\)
\(\rm = 0 + 2\overrightarrow{a} \times 3\overrightarrow{b} - 3\overrightarrow{b} \times 2\overrightarrow{a} - 0\)
\(\rm = 6 \: (\overrightarrow{a} \times \overrightarrow{b}) + 6\: (\overrightarrow{a} \times \overrightarrow{b} )\)
\(\rm = 12\: (\overrightarrow{a} \times \overrightarrow{b}) \)
Additional Information
Properties of Scalar Product
\(\rm \overrightarrow{a}.\overrightarrow{a} = \left |\overrightarrow{a} \right |^{2}\)
\(\rm \overrightarrow{a}.\overrightarrow{b} = \overrightarrow{b}.\overrightarrow{a}\) (Scalar product is commutative)
\(\rm \overrightarrow{a}.\overrightarrow{0} = 0\)
\(\rm \overrightarrow{a}.(\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} . \overrightarrow{b} + \overrightarrow{a} . \overrightarrow{c}\) (Distributive of scalar product over addition)
In terms of orthogonal coordinates for mutually perpendicular vectors, it is seen that \(\rm \overrightarrow{i}. \overrightarrow{i} = \overrightarrow{j}. \overrightarrow{j} = \overrightarrow{k} . \overrightarrow{k} =1\)
Properties of Vector Product
\(\rm \overrightarrow{a} \times \overrightarrow{a} = 0\)
\(\rm \overrightarrow{a} \times \overrightarrow{b} = - \overrightarrow{b} \times \overrightarrow{a} \) (non-commutative)
\(\rm \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}\) (Distributive of vector product over addition)
\(\rm \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0\)
\(\rm \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k} ,\overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j} \)
Vector Algebra Question 2:
What is \(\left( {\vec a - \vec b} \right) \times \left( {\vec a + \vec b} \right)\)equal to?
Answer (Detailed Solution Below)
Vector Algebra Question 2 Detailed Solution
Concept:
- \(\vec a\) and \(\vec b\) are two vectors parallel to each other ⇔ \(\vec a \times \vec b = 0\)
- Cross product of parallel vectors are zero ⇔ \(\vec a \times \vec a = 0,{\rm{\;}}\vec b \times \vec b = 0{\rm{\;and\;}}\vec c \times \vec c = 0\)
- A cross or vector product is not commutative ⇔ \(\vec a \times \vec b = - {\rm{\;}}\vec b \times \vec a\)
Calculation:
We have to find the value of \(\left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right)\)
\(\Rightarrow \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) = {\rm{\;\vec a\;}} \times {\rm{\;\vec a}} + {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} - {\rm{\;\vec b\;}} \times {\rm{\;\vec a}} - {\rm{\;\vec b\;}} \times {\rm{\;\vec b}}\)
We know that \({\rm{\vec a\;}} \times {\rm{\;\vec b}} = - {\rm{\;\vec b\;}} \times {\rm{\;\vec a}}\)
\(\Rightarrow \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) = {\rm{\;}}0 + {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} + {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} - {\rm{\;}}0\) \(\because \left( {{\rm{\vec a\;}} \times {\rm{\;\vec a}} = \;{\rm{\vec b\;}} \times {\rm{\;\vec b}} = 0} \right)\)
\(\Rightarrow \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) = {\rm{\;}}2\;\left( {{\rm{\;\vec a\;}} \times {\rm{\;\vec b}}} \right)\)
∴ Option 3 is correct.
Vector Algebra Question 3:
If \({\rm{\vec a}},{\rm{\vec b}},{\rm{\vec c}}\) are mutually perpendicular vectors of equal magnitude, then the angle between \({\rm{\vec a}} + {\rm{\vec b}} + {\rm{\vec c}}\) and \({\rm{\vec a}}\) is
Answer (Detailed Solution Below)
Vector Algebra Question 3 Detailed Solution
Concept:
Dot Product: it is also called the inner product or scalar product
- Let the two vectors be \(\vec a\;{\rm{and\;}}\vec b\) then dot Product of two vector: \(\vec a.\;\vec b = \;\left| {\bf{a}} \right|\left| {\bf{b}} \right|\;{\bf{cos}}\;{\bf{\theta }}\) Where, |\(\vec a\)| = Magnitude of vectors a and |\(\vec b\)| = Magnitude of vectors b and θ is angle between a and b
- \(\vec i.\vec i = \vec j.\vec j = \vec k.\vec k = 1{\rm{\;and\;}}\overrightarrow {\;i} .\vec j = \vec j.\vec i = \vec i.\vec k = \vec k.\vec i = \vec j.\vec k = \vec k.\vec j = 0\)
Calculation:
Let \(\vec a = \vec i,\vec b = \vec j,\vec c = \vec k\)
\(\therefore \left( {{\rm{\vec a}} + {\rm{\vec b}} + {\rm{\vec c}}} \right).{\rm{\vec a}} = \left| {{\rm{\vec a}} + {\rm{\vec b}} + {\rm{\vec c}}} \right|\left| {{\rm{\vec a}}} \right|\cos \theta \)
\(\Rightarrow \left( {{\rm{\vec i}} + \vec j + {\rm{\vec k}}} \right).{\rm{\vec i}} = \left| {{\rm{\vec i}} + \vec j + {\rm{\vec k}}} \right|\left| {{\rm{\vec i}}} \right|\cos \theta \)
⇒ 1 + 0 + 0 = √3 × 1 × cos θ
⇒ cos θ = 1/√3
∴ θ = cos−1 (1/√3)Vector Algebra Question 4:
What is the value of k for which the vector k(2î - ĵ - 2k̂) is of 6 units length?
Answer (Detailed Solution Below)
Vector Algebra Question 4 Detailed Solution
Concept:
Length of the vector \(\rm a\hat{i} + b\hat{j} + c\hat{k} \) from origin is \(\rm \sqrt{a^{2} + b^{2} + c^{2}}\)
Calculation:
Length of the vector k(2î - ĵ - 2k̂) from origin is
\(\rm \sqrt{(2k)^{2} + (-k)^{2} + (-2k)^{2}}\)
= \(\rm \sqrt{4k^{2} + k^{2} + 4k^{2}}\)
= \(\rm \sqrt{9k^{2} }\)
= 3k
Length is 6 units given
3k = 6
k = 6/3
k = 2
Hence option 2 is correct.
Vector Algebra Question 5:
If a + b + c = 0, and |a| = 3, |b| = 5, |c| = 7, then what is the angle between a and b?
Answer (Detailed Solution Below)
Vector Algebra Question 5 Detailed Solution
Concept:
If θ is the angle between x and y then x.y = xycosθ
Calculation:
GIven, a + b + c = 0
⇒ a + b = -c, squaring both sides we get
⇒ (a + b)2 = (-c)2
⇒ |a + b|2 = |c|2
⇒ |a|2 + |b|2 +2|a||b|cosθ = |c|2, where θ = angle betwee a and b
Putting the values we get,
32 + 52 + 2× 3× 5 cosθ = 72
⇒ 9 + 25 + 30cosθ = 49
⇒ 30cosθ = 49 - 34 = 15
⇒ cosθ = \(1\over 2\)
∴ θ = 60°
Vector Algebra Question 6:
If \(\hat{a}, \hat{b}, \hat{c}\), are unit vectors and \(\hat{a}+\hat{b}+\hat{c}=0\) then the value of of \(\hat{a}\cdot \hat{b}+\hat{b}\cdot \hat{c}+\hat{c}\cdot \hat{a}\) is :
Answer (Detailed Solution Below)
Vector Algebra Question 6 Detailed Solution
Concept:
Dot Product: it is also called the inner product or scalar product
Let the two vectors are \(\rm \vec a\) and \(\rm \vec b\)
Dot Product of two vectors is given by: \(\rm \vec a.{\rm{\;}}\vec b\) = |a||b| cos θ
Where |\(\rm \vec a\)| = Magnitudes of vectors a, |\(\rm \vec b\)| = Magnitudes of vectors b and θ is the angle between a and b
Formulas of Dot Product:
\(\rm \vec i.\vec i = \vec j.\vec j = \vec k.\vec k = 1\)
\(\rm \vec i.\vec j = \vec j.\vec i = \vec i.\vec k = \vec k.\vec i =\vec j.\vec k= \vec k.\vec j = 0\)
Calculation:
Given that,
(â + b̂ + ĉ) = 0 ----(1)
We know that,
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ (â + b̂ + ĉ)2 = â ⋅ â + b̂ ⋅ b̂ + ĉ ⋅ ĉ + 2(â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â)
From equation (1), we get
⇒ (1 + 1 + 1) + 2 (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = 0
∴ (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = - 3/2
Vector Algebra Question 7:
If â and b̂ are unit vectors such that â + 2b̂ and 5â - 4b̂ are perpendicular to each other, then the angle between â and b̂ is
Answer (Detailed Solution Below)
Vector Algebra Question 7 Detailed Solution
Concept:
For unit vectors:
\(|\vec{a}|=\vec{a}\cdot\vec{a}=1\)
\(|\vec{b}|=\vec{b}\cdot\vec{b}=1\)
When two vectors \(\vec{A}\)and \(\vec{B}\) are perpendicular to each other then the dot product is zero i.e.
\(\vec{A}\cdot\vec{B}=0\)
Calculation:
Given:
\(\vec{A}=â + 2b̂\), \(\vec{B}=5â - 4b̂\)
\(\vec{A}\cdot\vec{B}=0\) [∵ perpendicular to each other]
\((â + 2b̂)\cdot(5â - 4b̂)=0\)
\(5\vec{a}\cdot\vec{a}-4\vec{a}\cdot\vec{b}+10\vec{a}\cdot\vec{b}-8\vec{b}\cdot\vec{b}=0\)
\(-3+6\vec{a}\cdot\vec{b}=0\)
\(\vec{a}\cdot\vec{b}=\frac{3}{6}=\frac{1}{2}\)
\(|\vec{a}|\cdot|\vec{b}|\cdot\cos θ=\frac{1}{2}\)
∴ θ = π/3
Vector Algebra Question 8:
What is the value of λ for which the vectors \(\rm 2\hat i - 5\hat j - \hat k\) and \(\rm -\hat i + 4 \hat j + \lambda\hat k\) are perpendicular?
Answer (Detailed Solution Below)
Vector Algebra Question 8 Detailed Solution
Concept:
If vectors \(\rm \vec a\;and\;\vec b\) are perpendicular then \(\rm \vec a \cdot \;\vec b = 0\)
Calculation:
Given: \(\rm 2\hat i - 5\hat j - \hat k\) and \(\rm -\hat i + 4 \hat j + λ\hat k\) are perpendicular
Let \(\rm \vec a = 2\hat i - 5\hat j - \hat k\) and \(\rm \vec b = -\hat i + 4 \hat j + λ\hat k\)
We know that, If vectors \(\rm \vec a\;and\;\vec b\) are perpendicular then \(\rm \vec a \cdot \;\vec b = 0\)
\(\rm \vec a \cdot \vec b = ( 2\hat i - 5\hat j - \hat k) \cdot (-\hat i + 4 \hat j + λ\hat k) = 0\)
⇒ -2 - 20 - λ = 0
⇒ -22 - λ = 0
∴ λ = -22
Vector Algebra Question 9:
If \(\rm x\vec{i} - 2\vec{j} + 3\vec{k}\) and \(\rm 2\vec{i} - 4\vec{j} + y\vec{k}\) are parallel vectors then x is equal to?
Answer (Detailed Solution Below)
Vector Algebra Question 9 Detailed Solution
Concept:
If \({\rm{\vec a\;and\;\vec b}}\) are two vectors parallel to each other then \({\rm\vec{a} = λ \vec{b}}\) or \(\rm \vec{a} × \vec{b} =0\)
Calculation:
Given:
\(\rm x\vec{i} - 2\vec{j} + 3\vec{k}\) and \(\rm 2\vec{i} - 4\vec{j} + y\vec{k}\) are parallel vectors,
Therefore, \(\rm x\vec{i} - 2\vec{j} + 3\vec{k} = λ (\rm 2\vec{i} - 4\vec{j} + y\vec{k})\)
Equating the coefficient of \(\rm \vec{i},\vec{i} \;and\; \vec{k}\)
⇒ x = 2λ .... (1)
⇒ -2 = -4λ
∴ λ = 1/2
Put the value of λ in equation (1), we get
x = 2 × (1/2)
So, x = 1
Vector Algebra Question 10:
If the vectors \(a\hat i + \hat j + \hat k,\;\hat i + b\hat j + \hat k\) and \(\hat i + \hat j + c\hat k\;\left( {a,\;b,\;c \ne 1} \right)\) are coplanar, then the value of \(\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}}\) is equal to
Answer (Detailed Solution Below)
Vector Algebra Question 10 Detailed Solution
Concept:
Scaler triple product of the vectors:
The scaler triple product of the vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) is given by:
\({\rm{\bar A}} \cdot \left[ {{\rm{\bar B}} \times {\rm{\bar C}}} \right] = {\rm{\;}}\left| {\begin{array}{*{20}{c}} {{{\rm{x}}_1}}&{{{\rm{y}}_1}}&{{{\rm{z}}_1}}\\ {{{\rm{x}}_2}}&{{{\rm{y}}_2}}&{{{\rm{z}}_2}}\\ {{{\rm{x}}_3}}&{{{\rm{y}}_3}}&{{{\rm{z}}_3}} \end{array}} \right|\)Coplaner vectors:
Three vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) are said to be coplaner if the scaler triple product \({\bf{\bar A}} \cdot \left[ {{\bf{\bar B}} \times {\bf{\bar C}}} \right] = 0.\)
Solution:
Let the given vectors be \({\rm{\bar A}} = {\rm{a}}\hat i + \;\hat j + {\rm{\;}}\hat k,\;\bar B = \;\hat i + \;b\hat j + \hat k\) and \({\rm{\bar C}} = {\rm{\;}}\hat i + \;\hat j + {\rm{c}}\hat k\).
It is given that the vectors are coplaner therefore the scaler triple product \({\rm{\bar A}} \cdot \left[ {{\rm{\bar B}} \times {\rm{\bar C}}} \right] = 0.\)
Therefore,
\(\left| {\begin{array}{*{20}{c}} {\rm{a}}&1&1\\ 1&{\rm{b}}&1\\ 1&1&{\rm{c}} \end{array}} \right| = 0\)
Perform the coloumn operation C1 – C2 as follows:
\(\left| {\begin{array}{*{20}{c}} {{\rm{a}} - 1}&1&1\\ {1 - {\rm{b}}}&{\rm{b}}&1\\ 0&1&{\rm{c}} \end{array}} \right| = 0\)
Now perform another coloum operation C2 – C3 as follows:
\(\left| {\begin{array}{*{20}{c}} {{\rm{a}} - 1}&0&1\\ {1 - {\rm{b}}}&{{\rm{b}} - 1}&1\\ 0&{1 - {\rm{c}}}&{\rm{c}} \end{array}} \right| = 0\)
Take (1 - a)(1 - b)(1 - c) common. Note that it is given that a,b,c ≠ 0 therefore this action is jstified.
\(\left( {1 - {\rm{a}}} \right)\left( {1 - {\rm{b}}} \right)\left( {1 - {\rm{c}}} \right)\left| {\begin{array}{*{20}{c}} { - 1}&0&{\frac{1}{{1 - {\rm{a}}}}}\\ 1&{ - 1}&{\frac{1}{{1 - {\rm{b}}}}}\\ 0&1&{\frac{{\rm{c}}}{{1 - {\rm{c}}}}} \end{array}} \right| = 0\)
Since a, b, c ≠ 0 therefore (1 - a)(1 - b)(1 - c) ≠ 0.Therefore the determinant has to be zero.
\( - 1\left( {\frac{{\rm-{c}}}{{1 - {\rm{c}}}} - {\rm{}}\frac{1}{{1 - {\rm{b}}}}} \right) + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)
\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{{\rm{c}}}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)
Simplify the above expression as follows:
\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} - {\rm{\;}}1 + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)
\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 1\)
Therefore, \(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 1\).