Integral Calculus MCQ Quiz - Objective Question with Answer for Integral Calculus - Download Free PDF
Last updated on Jul 8, 2025
Latest Integral Calculus MCQ Objective Questions
Integral Calculus Question 1:
Let \( f:[0,1] \rightarrow \bigg[ 0, \dfrac{1}{2} \bigg] \) be a function such that \(f(x)\) is a polynomial of \(2nd\) degree, satisfy the following condition :
(a) \(f(0) =0\)
(b) has a maximum value of \(\dfrac{1}{2}\) at \(x=1\).
If \(A\) is the area bounded by \(y= f(x); \ y=f^{-1}(x)\) and the line \(2x +2y-3=0\) in \(1st\) quadrant, then the value of \(48A\) is equal to .............
Answer (Detailed Solution Below) 10
Integral Calculus Question 1 Detailed Solution
Calculation
Given \(f(0) = 0 \) & \(f'(1) = 0\) & \(f(1) = \frac{1}{2}\)
\(\therefore f(x) = \frac{2x - x^2}{2}\)
\(f^{-1}(x)\) is the image of \(f(x)\) on \(y = x.\)
Also, \(2x + 2y = 3\) passes through \(A(1, \frac{1}{2})\) & \(B(\frac{1}{2}, 1)\)
so bounded Area \(A\)
\(= AreaOAB = 2[Area OCM + Area CMNA - Area ONA]\)
\(A = 2[\frac{1}{2} \times \frac{3}{4} \times \frac{3}{4} + \frac{1}{2} (\frac{3}{4} + \frac{1}{2}) \times \frac{1}{4} - \frac{1}{2} \int_0^1 (2x - x^2) , dx]\)
\(\Rightarrow A = 2[\frac{9}{32} + \frac{5}{32} - [x^2 - \frac{x^3}{3}]_0^1]\)
\(\Rightarrow A = 2[\frac{14}{32} -(1 - \frac{1}{3})] \)
\(\Rightarrow A = \frac{28}{32} - \frac{2}{3} = \frac{7}{8} - \frac{2}{3} \)\(\Rightarrow A = \frac{21 - 16}{24} = \frac{5}{24} \)
⇒ 48A = 10
Integral Calculus Question 2:
Comprehension:
Let f(x) = [x2] where [.] is the greatest integer function.
\(\int_{\sqrt{2}}^{2} f(x) dx\) is equal to ?
Answer (Detailed Solution Below)
Integral Calculus Question 2 Detailed Solution
Calculation:
Given,
The function is \( f(x) = \lfloor x^2 \rfloor \).
We are tasked with finding the value of \( \int_{\sqrt{2}}^{2} f(x) dx \).
We can break the integral into two parts as follows:
\( \int_{\sqrt{2}}^{2} f(x) dx = \int_{\sqrt{2}}^{\sqrt{3}} 2 dx + \int_{\sqrt{3}}^{2} 3 dx \)
For the range \( \sqrt{2} \leq x \leq \sqrt{3} \), \( \lfloor x^2 \rfloor = 2 \). So the first part of the integral is:
\( \int_{\sqrt{2}}^{\sqrt{3}} 2 dx = 2 \times (\sqrt{3} - \sqrt{2}) \)
For the range \( \sqrt{3} \leq x \leq 2 \), \( \lfloor x^2 \rfloor = 3 \). So the second part of the integral is:
\( \int_{\sqrt{3}}^{2} 3 dx = 3 \times (2 - \sqrt{3}) \)
Now, we calculate the values:
\( 2 \times (\sqrt{3} - \sqrt{2}) = 2\sqrt{3} - 2\sqrt{2} \)
\( 3 \times (2 - \sqrt{3}) = 6 - 3\sqrt{3} \)
Combining the two parts:
\( 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3} = 6 - 2\sqrt{2} - \sqrt{3} \)
Hence, the correct answer is Option 1.
Integral Calculus Question 3:
Comprehension:
Let f(x) = [x2] where [.] is the greatest integer function.
What \(\int_{\sqrt{2}}^{\sqrt{3}} f(x) dx\) equal to?
Answer (Detailed Solution Below)
Integral Calculus Question 3 Detailed Solution
Calculation:
Given,
The function is \( f(x) = \left\lfloor x^2 \right\rfloor \), where \( \left\lfloor x^2 \right\rfloor \) is the greatest integer function.
We are tasked with finding:
\( \int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}} \left\lfloor x^2 \right\rfloor \, dx \)
Decomposing the integral based on the function:
For \\(\frac{\sqrt{3}}{2} \leq x < 1 \), x2 lies between \(\frac{3}{4} \) and 1, so \(\left\lfloor x^2 \right\rfloor = 0 \). Therefore,
\( \int_{\frac{\sqrt{3}}{2}}^1 0 \, dx = 0 \)
For\( 1 \leq x < \sqrt{2} \), x2 lies between 1 and 2, so \(\left\lfloor x^2 \right\rfloor = 1 .\) Therefore,
\( \int_1^{\sqrt{2}} 1 \, dx = \sqrt{2} - 1 \)
For \(\sqrt{2} \leq x < \sqrt{3} \), x2 lies between 2 and 3, so \(\left\lfloor x^2 \right\rfloor = 2\) . Therefore,
\( \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx = 2(\sqrt{3} - \sqrt{2}) \)
Summing up all the results:
\( \int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}} \left\lfloor x^2 \right\rfloor \, dx = 0 + (\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) \)
= \( 2(\sqrt{3} - \sqrt{2}) \).
Hence, the correct answer is Option 2.
Integral Calculus Question 4:
Comprehension:
The slope of the tangent to the curve y = f(x) at (x, f(x) ) is 4 for every real number x and the curve passes through the origin.
. What is the area bounded by the curve, the x-axis and the line x = 4?
Answer (Detailed Solution Below)
Integral Calculus Question 4 Detailed Solution
Calculation:
Given,
The equation of the curve is y = 4x , and the line x = 4 intersects the curve at the point (4, 16) . We need to find the area bounded by the curve, the x-axis, and the line x = 4 .
The region of interest is a right triangle with a base along the x-axis from x = 0 to x = 4 and a height of 16 units, corresponding to the point (4, 16) .
The area of the triangle is given by the formula:
\( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \)
Substituting the values of the base (4 units) and the height (16 units):
\( \text{Area} = \frac{1}{2} \times 4 \times 16 = 32 \, \text{square units} \)
∴ The area is 32 square units.
Hence, the correct answer is option 3.
Integral Calculus Question 5:
Comprehension:
The slope of the tangent to the curve y = f(x) at (x, f(x) ) is 4 for every real number x and the curve passes through the origin.
What is the nature of the curve?
Answer (Detailed Solution Below)
Integral Calculus Question 5 Detailed Solution
Calculation:
Given,
The slope of the tangent to the curve y = f(x) at (x, f(x)) is 4 for every real number x , and the curve passes through the origin.
The slope of the tangent is the derivative of the function, so we have:
\( f'(x) = 4 \)
Integrating f'(x) = 4 with respect to x :
\( f(x) = 4x + C \)
The curve passes through the origin, so when x = 0 , y = 0 . Substituting these values into the equation f(x) = 4x + C :
\( 0 = 4(0) + C \quad \Rightarrow \quad C = 0 \)
Therefore, the equation of the curve is:
\( f(x) = 4x \)
This is the equation of a straight line with a slope of 4, passing through the origin.
∴ The curve is a straight line with a slope of 4, passing through the origin.
Hence, the correct answer is option 1.
Top Integral Calculus MCQ Objective Questions
What is \(\mathop \smallint \nolimits_0^1 {\rm{x}}{(1 - {\rm{x}})^9}{\rm{dx}}\) equal to?
Answer (Detailed Solution Below)
Integral Calculus Question 6 Detailed Solution
Download Solution PDFConcept:
Definite Integral properties:
\(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{\;dx}}\)
Calculation:
Let f(x) = x(1 – x)9
Now using property, \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{\;dx}}\)
\(\mathop \smallint \nolimits_0^1 {\rm{x}}{(1 - {\rm{x}})^9}{\rm{dx}} = \mathop \smallint \limits_0^1 \left( {1 - {\rm{x}}} \right){\left\{ {1 - \left( {1 - {\rm{x}}} \right)} \right\}^9}{\rm{dx}}\)
\(⇒ \mathop \smallint \limits_0^1 \left( {1 - {\rm{x}}} \right){{\rm{x}}^9}{\rm{dx}}\)
\(⇒ \mathop \smallint \limits_0^1 \left( {{{\rm{x}}^9} - {{\rm{x}}^{10}}} \right){\rm{dx}}\)
\(⇒\left[ {\frac{{{{\rm{x}}^{10}}}}{{10}} - \frac{{{{\rm{x}}^{11}}}}{{11}}} \right]_0^1\)
⇒ 1/10 – 1/11
⇒ 1/110
∴ The value of integral \(\mathop \smallint \nolimits_0^1 {\rm{x}}{(1 - {\rm{x}})^9}{\rm{dx}}\) is 1/110.
What is \(\int_0^2 \rm \dfrac{dx}{x^2+4}\) equal to?
Answer (Detailed Solution Below)
Integral Calculus Question 7 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{dx}{x^2+a^2} = \frac{1}{a}\; \tan^{-1}(\frac{x}{a}) + c\)
Calculation:
Let I = \(\displaystyle\int_0^2 \rm \dfrac{dx}{x^2+4}\)
= \(\displaystyle\int_0^2 \rm \dfrac{dx}{x^2+2^2}\)
\(= \rm [\frac{1}{2}\; \tan^{-1}(\frac{x}{2})] _{0}^{2}\)
\(= \rm [\frac{1}{2}\; \tan^{-1}1 -\frac{1}{2}\; \tan^{-1}0 ]\)
\(= \rm \frac{1}{2}\times \frac{\pi}{4} - 0\)
= \(\rm \dfrac{\pi}{8}\)
What is the area of the parabola x2 = y bounded by the line y = 1?
Answer (Detailed Solution Below)
Integral Calculus Question 8 Detailed Solution
Download Solution PDFConcept:
The area under the curve y = f(x) between x = a and x = b, is given by:
Area = \(\rm\int_{a}^{b}ydx\)
Similarly, the area under the curve y = f(x) between y = a and y = b, is given by:
Area = \(\rm\int_{a}^{b}xdy\)
Calculation:
Here,
x2 = y and line y = 1 cut the parabola
∴ x2 = 1
⇒ x = 1 and -1
\( \text{Area =}\int_{-1}^{1} y d x \)
Here, the area is symmetric about the y-axis, we can find the area on one side and then multiply it by 2, we will get the area,
\( \text{Area}_1 = \int_{0}^{1} y d x \)
\( \text{Area}_1 = \int_{0}^{1} x^{2} dx \)
\(= \rm\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}\)
This area is between y = x2 and the positive x-axis.
To get the area of the shaded region, we have to subtract this area from the area of square i.e.
\((1 \times 1)-\frac{1}{3}=\frac{2}{3}\)
\(Total\;Area=2\times{\frac{2}{3}} =\frac{4}{3}\) square units.
Find the value of \(\rm \int_0^1 x \sqrt{x^2 + 4}\;dx\)
Answer (Detailed Solution Below)
Integral Calculus Question 9 Detailed Solution
Download Solution PDFConcept:
\(\rm \int x^n dx = \frac{x^{n+1}}{n+1}+c\)
Calculation:
I = \(\rm \int_0^1 x \sqrt{x^2 + 4}\;dx\)
Let x2 + 4 = t
Differentiating with respect to x, we get
⇒ 2xdx = dt
⇒ xdx = \(\rm \frac {dt}{2}\)
x | 0 | 1 |
t | 4 | 5 |
Now,
I = \(\rm \frac{1}{2}\int_4^5 \sqrt{t}\;dt\)
= \(\rm \frac{1}{2} \left[\frac{t^{3/2}}{\frac{3}{2}} \right ]_4^5\)
= \(\rm \frac{1}{3} \left[5^{3/2} - 4^{3/2} \right ]\)
= \(\rm \frac{1}{3}[5\sqrt 5 - 8]\)
Evaluate \(\rm \int cos^2 x\;dx\)
Answer (Detailed Solution Below)
Integral Calculus Question 10 Detailed Solution
Download Solution PDFConcept:
1 + cos 2x = 2cos2 x
1 - cos 2x = 2sin2 x
\(\rm \int \cos x\;dx = \sin x + c\)
Calculation:
I = \(\rm \int cos^2 x\;dx\)
= \(\rm \int \frac{1+\cos 2x}{2}\;dx\)
= \(\rm \frac{1}{2}\int (1+\cos 2x)\;dx\)
= \(\rm \frac{1}{2} \left[x+\frac{\sin 2x}{2} \right ] + c\)
= \(\rm \frac{x}{2}+\frac{\sin 2x}{4} + c\)
\(\rm \int _{0}^{2\pi} \frac{\sin 2x}{a -b\cos x}dx\) is equal to ?
Answer (Detailed Solution Below)
Integral Calculus Question 11 Detailed Solution
Download Solution PDFConcept:
\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{dx}}\)
Calculation:
Let I = \(\rm \int _{0}^{2π} \frac{\sin 2x}{a -b\cos x}dx\) ----(1)
Using property f(a + b – x),
I = \(\rm \int _{0}^{2π} \frac{\sin 2(2π -x)}{a -b\cos (2π -x) }dx\)
As we know, sin (2π - x) = - sin x and cos (2π - x) = cos x
I = \(\rm \int _{0}^{2π} \frac{-\sin 2x}{a -b\cos x}dx\) ----(2)
I = -I
2I = 0
∴ I = 0
Evaluate \(\rm \int_{1}^{\infty} \frac{4}{x^4}dx\)
Answer (Detailed Solution Below)
Integral Calculus Question 12 Detailed Solution
Download Solution PDFConcept:
\(\rm \int x^n dx = \frac{x^{n+1}}{n+1}+c\)
Calculation:
I = \(\rm \int_{1}^{\infty} \frac{4}{x^4}dx\)
= \(\rm \int_{1}^{\infty}4{x^{-4}}dx\)
= \(\rm \left[\frac{4x^{-3}}{-3} \right ]_1^{\infty}\)
= \(\rm \frac{-4}{3}\left[\frac{1}{x^3} \right ]_1^{\infty}\)
= \(\rm \frac{-4}{3}\left[\frac{1}{\infty} - \frac{1}{1}\right ]\)
= \(\rm \frac{-4}{3}[0-1]\)
= \(\frac 4 3\)
The value of the integral \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\) is
Answer (Detailed Solution Below)
Integral Calculus Question 13 Detailed Solution
Download Solution PDFConcept:
\(\rm \displaystyle\int_{a}^{b} f(x) dx = \displaystyle\int_{a}^{b} f(a+b-x) dx\)
Calculations:
Consider, I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\) ....(1)
I = \(\rm \displaystyle\int_{0}^{\pi/2} \dfrac{\sqrt{\sin (\dfrac{\pi}{2}-x)}}{\sqrt{\sin (\dfrac{\pi}{2}-x)}+ \sqrt{\cos (\dfrac{\pi}{2}-x)}}dx\)
I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\) ....(2)
Adding (1) and (2), we have
2I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}+ \sqrt{sinx}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\)
2I = \(\rm \displaystyle\int_0^{\pi/2}dx\)
2I = \(\rm[x]^\frac{\pi}{2}_0\)
I = \(\dfrac{\pi}{4}\)
The area of the region bounded by the curve y = \(\rm \sqrt{16-x^2}\) and x-axis is
Answer (Detailed Solution Below)
Integral Calculus Question 14 Detailed Solution
Download Solution PDFConcept:
\(\int√{a^2-x^2}\;dx=\frac{x}{2} {√{x^2-a^2}}+\frac{a^2}{2}sin^{-1}\frac{x}{a}+c\)
Function y = √f(x) is defined for f(x) ≥ 0. Therefore y can not be negative.
Calculation:
Given:
y = \(\rm √{16-x^2}\) and x-axis
At x-axis, y will be zero
y = \(\rm √{16-x^2}\)
⇒ 0 = \(\rm √{16-x^2}\)
⇒ 16 - x2 = 0
⇒ x2 = 16
∴ x = ± 4
So, the intersection points are (4, 0) and (−4, 0)
Since the curve is y = \(\rm √{16-x^2}\)
So, y ≥ o [always]
So, we will take the circular part which is above the x-axis
Area of the curve, A \(\rm =\int_{-4}^{4}√{16-x^2}\;dx\)
We know that,
\(\int√{a^2-x^2}\;dx=\frac{x}{2} {√{x^2-a^2}}+\frac{a^2}{2}sin^{-1}\frac{x}{a}+c\)
= \( \rm [ \frac x 2 √{(4^2- x^2) }+ \frac {16}{2}sin^{-1} \frac x4]_{-4}^{4 }\)
= \( \rm [ \frac x 2 √{(4^2- 4^2) }+ \frac {16}{2}sin^{-1} \frac 44]- \rm [ \frac x 2 √{(4^2- (-4)^2) }+ \frac {16}{2}sin^{-1} \frac {4}{-4})]\)
= 8 sin-1 (1) + 8 sin-1 (1)
= 16 sin-1 (1)
= 16 × π/2
= 8π sq units
\(\rm \int \frac {1}{\sqrt{16-25x^2}}dx\) is equal to ?
Answer (Detailed Solution Below)
Integral Calculus Question 15 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{1}{\sqrt{a^2-x^2}}dx= \sin^{-1 } \left(\frac{x}{a} \right ) + c\)
Calculation:
I = \(\rm \int \frac {1}{\sqrt{16-25x^2}}dx\)
= \(\rm \int \frac {1}{\sqrt{16-(5x)^2}}dx\)
Let 5x = t
Differentiating with respect to x, we get
⇒ 5dx = dt
⇒ dx = \(\rm \frac {dt}{5}\)
Now,
I = \(\rm \frac {1}{5}\int \frac {1}{\sqrt{4^2-t^2}} dt\)
= \(\rm \frac 1 5 \sin^{-1} \left(\frac t 4 \right)\) + c
= \(\rm \frac 1 5 \sin^{-1} \left(\frac {5x} {4} \right)\) + c