Question
Download Solution PDF\(x=a\left(t+\frac{1}{t}\right)\) మరియు \(y=a\left(t-\frac{1}{t}\right)\) అయితే, \(\frac{d x}{d y}\) అనేది:
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFఇవ్వబడింది:
\(x=a\left(t+\frac{1}{t}\right)\) మరియు \(y=a\left(t-\frac{1}{t}\right)\)
భావన:
\(\rm \frac{d}{dt}t^n=nt^{n-1}\) సూత్రాన్ని ఉపయోగించండి.
మరియు \(\rm \frac{dx}{dy}=\frac{\frac{dx}{dt}}{\frac{dx}{dt}}\)
లెక్కింపు:
\(x=a\left(t+\frac{1}{t}\right)\) మరియు \(y=a\left(t-\frac{1}{t}\right)\)
t కి సంబంధించి రెండు సమీకరణాలను వేరు చేయండి.
\(\rm \frac{dx}{dt}=\frac{d}{dt}[a({t+\frac{1}{t}})]\) మరియు \(\rm \frac{dy}{dt}=\frac{d}{dt}[a({t-\frac{1}{t}})]\)
\(\rm \frac{dx}{dt}=a({1-\frac{1}{t^2}})\) మరియు \(\rm \frac{dy}{dt}=a({1+\frac{1}{t^2}})\)
ఇప్పుడు, మనకు తెలుసు
\(\rm \frac{dx}{dy}=\frac{\frac{dx}{dt}}{\frac{dy}{dt}}\)
అప్పుడు
\(\rm \frac{dx}{dy}=\frac{a({1-\frac{1}{t^2}})}{a({1+\frac{1}{t^2}})}\)
ఇప్పుడు కుడి వైపున ఉన్న లవం మరియు హారం రెండింటినీ t తో గుణించండి అప్పుడు
\(\rm \frac{dx}{dy}=\frac{a({t-\frac{1}{t}})}{a({t+\frac{1}{t}})}\)
\(\rm \frac{dx}{dy}=\frac{y}{x}\)
కాబట్టి (2) ఎంపిక సరైనది.
Last updated on Jun 19, 2025
-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive..
-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025.
-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.
-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.
-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).
-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.
-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).
-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.
-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.