Question
Download Solution PDFIf cosec θ + cot θ = p, then \(\rm\frac{p^2-1}{p^2+1}\) equal:
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFFormula Used:
(a + b)² = a² + 2ab + b²,
sin2 θ+cos² θ = 1 and 1 - sin2 θ = cos² θ
cot θ = cos θ/sin θ and cosec θ = 1/sin θ
and for equations a/b = c/d
Using the Componendo and Dividendo rule, we get
(a + b)/(a - b) = (c + d)/(c - d)
or (a-b)/(a+b) = (c-d)/(c+d)
Calculation:
1/sin θ + cos θ/sin θ = p
⇒ (1+cos θ)/sin θ = p/1
Squaring both sides of the given equation:
(1 + cos θ)²/sin2 θ = p²/1
⇒ (1 + cos² θ + 2cos θ)/sin2 θ = p²/1
Applying Componendo and Dividendo, we get
(1 + cos² θ + 2cos θ - sin2 θ)/(1 + cos² θ + 2cos θ + sin2 θ) = (p²-1)/(p2+1)
⇒ (1 - sin2 θ + cos² θ + 2cos θ )/(1 + cos² θ+ sin2 θ + 2cos θ ) = (p²-1)/(p2+1)
⇒ (cos² θ + cos² θ + 2cos θ )/(1 + 1 + 2cos θ ) = (p²-1)/(p2+1)
⇒ (2cos² θ + 2cos θ )/(2 + 2cos θ ) = (p²-1)/(p2+1)
⇒ 2cos θ(cos θ + 1 )/2(1 + cos θ ) = (p²-1)/(p2+1)
⇒ cos θ = (p²-1)/(p2+1)
Thus, value of (p²-1)/(p2+1) is cos θ.
Last updated on May 8, 2025
-> The KVS TGT Notiifcation 2025 will be released for 16661 vacancies.
-> The application dates will be announced along with the official notification.
-> Graduates with B.Ed or an equivalent qualification are eligible for this post.
-> Prepare with the KVS TGT Previous Year Papers here.