Question
Download Solution PDFसमतल 2x – 3y + 6z – 11 = 0, x-अक्ष के साथ sin–1(α) कोण बनाता है। α का मान किसके बराबर है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा:
यदि एक रेखा \(\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}\) मौजूद है, जिसमें दिशा अनुपात (a, b, c) और एक समतल Ax + By + Cz + D = 0 है, जिसका दिशा अनुपात (A, B, C) है, तब रेखा और समतल के बीच न्यूनकोण α निम्न द्वारा दिया जाता है:
sin θ = \(\left|\rm \frac{aA+bB+cC}{\sqrt{a^2+b^2+c^2}\sqrt{A^2+B^2+C^2}}\right|\)
गणना:
दिया गया है: समतल 2x – 3y + 6z – 11 = 0 x-अक्ष के साथ sin–1(α) कोण बनाता है।
∴ समतल का दिशा अनुपात = (A, B, C) = (2, -3, 6)
और x-अक्ष का दिशा अनुपात = (a, b, c) = (1, 0, 0)
∴ sin θ = \(\left|\rm \frac{aA+bB+cC}{\sqrt{a^2+b^2+c^2}\sqrt{A^2+B^2+C^2}}\right|\)
= \(\left|\rm \frac{1\times2+0\times(-3)+0\times6}{\sqrt{1^2+0^2+0^2}\sqrt{2^2+(-3)^2+6^2}}\right|\)
= \(\left|\rm \frac{2+0+0}{\sqrt{1+0+0}\sqrt{4+9+36}}\right|\)
= \(\frac{2}{\sqrt{49}}\)
= \(\frac{2}{7}\)
⇒ sin θ = \(\frac{2}{7}\)
⇒ θ = sin–1(\(\frac{2}{7}\))
∴ α = \(\frac{2}{7}\)
α का मान 2/7 के बराबर है।
सही उत्तर विकल्प 3 है।
Last updated on Jul 11, 2025
->Indian Airforce Agniveer (02/2026) Online Form Link has been activated at the official portal. Interested candidates can apply between 11th July to 31st July 2025.
->The Examination will be held 25th September 2025 onwards.
-> Earlier, Indian Airforce Agniveer Group X 2025 Last date had been extended.
-> Candidates applied online from 7th to 2nd February 2025.
-> The online examination was conducted from 22nd March 2025 onwards.
-> The selection of the candidates will depend on three stages which are Phase 1 (Online Written Test), Phase 2 ( DV, Physical Fitness Test, Adaptability Test), and Phase 3 (Medical Examination).
-> The candidates who will qualify all the stages of selection process will be selected for the Air Force Group X posts & will receive a salary ranging of Rs. 30,000.
-> This is one of the most sought jobs. Candidates can also check the Airforce Group X Eligibility here.