[0, 1] पर \(\rm y=\tan^{-1}\frac{1-x}{1+x}\) अधिकतम मान है:

This question was previously asked in
AAI ATC Junior Executive 21 Feb 2023 Shift 1 Official Paper
View all AAI JE ATC Papers >
  1. \(\frac{\pi}{4}\)
  2. \(\frac{\pi}{6}\)
  3. \(\frac{\pi}{2}\)
  4. \(\frac{\pi}{3}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{\pi}{4}\)
Free
AAI ATC JE Physics Mock Test
6.6 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

दिया गया है:

\(\rm y=\tan^{-1}\frac{1-x}{1+x}\) [0,1] पर 

अवधारणा:

सूत्र \(\rm tan(A-B)=\frac{tanA-tanB}{1+tanA\cdot tanB}\) उपयोग कीजिए,

गणना:

मान लीजिए \(\rm x=tanA\implies A=tan^{-1}x\)

\(\rm f(x)=\tan^{-1}\frac{1-x}{1+x}\)

\(\rm \implies f(x)=\tan^{-1}({\frac{1-tanA}{1+tanA}})\)

\(\rm \implies f(x)=\tan^{-1}({tan(\frac{\pi}{4}-A)})\)

\(\rm \implies f(x)=\frac{\pi}{4}-A\)

\(\rm \implies f(x)=\frac{\pi}{4}-tan^{-1}x\)

[0,1] में f(x) अधिकतम है, जब tan -1 x न्यूनतम है, तो 

x=0 पर,

\(\rm \implies f(0)=\frac{\pi}{4}-tan^{-1}(0)\)

\(\rm \implies f(0)=\frac{\pi}{4}\) (अधिकतम)

अतः विकल्प (1) सही है।

Latest AAI JE ATC Updates

Last updated on May 26, 2025

-> AAI ATC exam date 2025 will be notified soon. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on 4th April 2025, along with the details of application dates, eligibility, and selection process.

-> Total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More Applications of Derivatives Questions

More Differential Calculus Questions

Get Free Access Now
Hot Links: yono teen patti teen patti gold teen patti 50 bonus teen patti real cash 2024