Question
Download Solution PDFएक वृत्त में निहित एक समबाहु त्रिभुज का क्षेत्रफल 4√3 सेमी2 है, तो वृत्त का क्षेत्रफल है:
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
एक वृत्त में एक समबाहु त्रिभुज निहित है।
समबाहु त्रिभुज का क्षेत्रफल = 4√3 सेमी2
प्रयुक्त अवधारणा:
समबाहु त्रिभुज का क्षेत्रफल = \(\frac{{√ 3 }}{4}{a^2}\)
गणना:
\(\frac{{√ 3 }}{4}{a^2}\) = 4√3
a2 = 16
a = 4
समबाहु त्रिभुज की परि-त्रिज्या = \(\frac{a}{{\sqrt 3 }}\)
r = \(\frac{4}{{\sqrt 3 }}\)
वृत्त का क्षेत्रफल = πr2
πr2 = \(\pi \times \frac{4}{{\sqrt 3 }} \times \frac{4}{{\sqrt 3 }}\)
क्षेत्रफल = \(\dfrac{16}{3}\pi\) सेमी2
Last updated on May 12, 2025
-> The Territorial Army Notification 2025 has been released for the recruitment of Officers.
-> Candidates will be required to apply online on territorialarmy.in from 12 May to 10 June
-> Candidates between 18 -42 years are eligible for this recruitment.
-> The candidates must go through the Territorial Army Exam Preparation Tips to strategize their preparation accordingly.