Question
Download Solution PDF\(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) अशून्य असमतलीय सदिश हैं तथा \(\overrightarrow{p}=\frac{\overrightarrow{b}\times\overrightarrow{c}}{[bca]},\overrightarrow{q}=\frac{\overrightarrow{c}\times\overrightarrow{a}}{[cab]},\overrightarrow{r}=\frac{\overrightarrow{a}\times\overrightarrow{b}}{[abc]}\), तब [abc] =
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
यदि \(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) तीन सदिश हैं, तो \(\overrightarrow{a}\cdot(\overrightarrow{b}\times \overrightarrow{c})\) को अदिश त्रिक गुणनफल या बॉक्स गुणनफल कहा जाता है, जिसे [abc] द्वारा दर्शाया जाता है।
- [abc] = [bca] = [cab] (यह चक्रीय क्रम का पालन करता है)
चार सदिशों, \(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c},\overrightarrow{d}\) के लिए चतुष्क गुणनफल निम्न द्वारा दिया जाता है:
\((\overrightarrow{a}\times\overrightarrow{b})\times (\overrightarrow{c}\times\overrightarrow{d})\) = [abd]c - [abc]d
गणना:
हमें प्राप्त है, \(\overrightarrow{p}=\frac{\overrightarrow{b}\times\overrightarrow{c}}{[bca]},\overrightarrow{q}=\frac{\overrightarrow{c}\times\overrightarrow{a}}{[cab]},\overrightarrow{r}=\frac{\overrightarrow{a}\times\overrightarrow{b}}{[abc]}\)
[pqr] = \([\frac{\overrightarrow{b}\times\overrightarrow{c}}{[bca]}\frac{\overrightarrow{c}\times\overrightarrow{a}}{[cab]}\frac{\overrightarrow{a}\times\overrightarrow{b}}{[abc]}]\)
\(\rm[\vec p\ \vec q\ \vec r]=\frac{1}{[\vec a\ \vec b\ \vec c]}\left[(\vec b\times \vec c)\ (\vec c \times \vec a)\ (\vec a \times \vec b)\right]\)
\(\Rightarrow \rm[\vec p \vec q\vec r]=\frac{1}{[\vec a\vec b\vec c]}(\vec b\times \vec c)\left((\vec c \times \vec a)\times(\vec a \times \vec b)\right)\) ...........(1)
∵ \(\rm (\vec c \times \vec a)\times(\vec a \times \vec b)=\left((\vec c\times \vec a).\vec b\right)\vec a-\left((\vec c \times \vec a).\vec a\right)\vec b\)
\(\Rightarrow \rm (\vec c \times \vec a)\times(\vec a \times \vec b)=[\vec c\ \vec a\ \vec b]\vec a-0\)
\(\Rightarrow \rm (\vec c \times \vec a)\times(\vec a \times \vec b)=[\vec a\ \vec b\ \vec c]\vec a\) .......(2)
इसे (1) में रखने पर,
\(\Rightarrow \rm[\vec p \vec q\vec r]=\frac{1}{[\vec a\vec b\vec c]}(\vec b\times \vec c).[\vec a\ \vec b\ \vec c]\vec a\)
\(\rm=\frac{[\vec a\ \vec b \ \vec c]}{[\vec a\ \vec b\ \vec c]}(\vec b\times \vec c).\vec a\)
\(\rm =1[\vec b\ \vec c\ \vec a]=[\vec a\ \vec b\ \vec c]\)
सही उत्तर विकल्प 1 है।
Last updated on Jul 17, 2025
-> The latest RPSC Senior Teacher Notification 2025 notification has been released on 17th July 2025
-> A total of 6500 vacancies have been declared.
-> The applications can be submitted online between 19th August and 17th September 2025.
-> The written examination for RPSC Senior Teacher Grade 2 Recruitment (Secondary Ed. Dept.) will be communicated soon.
->The subjects for which the vacancies have been released are: Hindi, English, Sanskrit, Mathematics, Social Science, Urdu, Punjabi, Sindhi, Gujarati.