N प्रचक्रणों के एक-विमीय तंत्र में, हर प्रचक्रण के अनुमत मान σ1 = {1, 2, 3, ....,q} हैं, जहां q ≥ 2 पूर्णांक है। इस तंत्र की ऊर्जा निम्न है

\(-J \sum_{i=1}^N \delta_{\sigma_i, \sigma_{i+1}}\)

जहां J > 0 नियतांक है। यदि आवर्ती परिसीमा प्रतिबंध लागू किये जाएं तो तंत्र की निम्नतम अवस्थाओं की संख्या ________ है

  1. q
  2. Nq
  3. qN
  4. 1

Answer (Detailed Solution Below)

Option 1 : q

Detailed Solution

Download Solution PDF

व्याख्या:

  • इस प्रणाली की ऊर्जा न्यूनतम होती है जब प्रत्येक आसन्न स्पिन का मान समान होता है क्योंकि इससे क्रोनकर डेल्टा, \(δ(σ_i,σ_{i+1})\), 1 के बराबर हो जाता है, जिससे -NJ की न्यूनतम ऊर्जा प्राप्त होती है।
  • आवर्तक सीमा शर्त यह सुनिश्चित करती है कि पहले और अंतिम स्पिन (स्पिन संख्या 1 और N) को भी पड़ोसी के रूप में माना जाता है।
  • प्रणाली के लिए न्यूनतम ऊर्जा होने के लिए, सभी स्पिन समान होने चाहिए। इसलिए, यदि आप पहले स्पिन के लिए 'q' संभावित मानों में से किसी एक को चुनते हैं, तो न्यूनतम अवस्था प्राप्त करने के लिए अन्य सभी स्पिन समान होने चाहिए।
  • इसलिए, पहले स्पिन के मान के प्रत्येक विकल्प के लिए, ठीक एक भूतल अवस्था विन्यास है। और क्योंकि पहले स्पिन के मान के लिए ऐसे 'q' विकल्प हैं, प्रणाली के लिए 'q' अलग-अलग भूतल अवस्थाएँ हैं।
  • इसलिए, भूतल अवस्थाओं की संख्या q है।

More Thermodynamic and Statistical Physics Questions

Get Free Access Now
Hot Links: teen patti jodi teen patti gold apk download teen patti bonus teen patti star login teen patti real cash game