Trigonometric Functions MCQ Quiz - Objective Question with Answer for Trigonometric Functions - Download Free PDF

Last updated on Jun 2, 2025

Latest Trigonometric Functions MCQ Objective Questions

Trigonometric Functions Question 1:

Find general value of θ when tan θ = tan α 

  1. nπ - α 
  2. nπ + α 
  3. \(\rm \frac {nπ}{2}\) + α 
  4. All of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : nπ + α 

Trigonometric Functions Question 1 Detailed Solution

Explanation:

tan θ = tan α

∴ θ = nπ + α 

Trigonometric Functions Question 2:

Find the domain and range of the function whose graph is as shown below

F4 Madhuri Engineering 26.04.2022 D1

  1. Domain = R - [-1, 1], Range = [-1,1]
  2. Domain = R - {x : x = nπ, n ∈ Z}, Range = R - (-1, 1)
  3. Domain = R - {x : x =(2n+1)π, n∈Z}, Range = R - [-1, 1]
  4. Domain = R - {x : x = nπ, n∈Z}, Range = R 
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : Domain = R - {x : x = nπ, n ∈ Z}, Range = R - (-1, 1)

Trigonometric Functions Question 2 Detailed Solution

Concept:

  • The domain of a function is the set of values that we are allowed to plug into our function.
  •  The range is the set of all possible values that the function will give when we give in the domain as input.

Calculation:

The above graph is of the function cosecx

Since \(cosec x = \frac{1}{sinx}\), the domain of the cosec function is the set {x : x ∈ R and x ≠ nπ, n ∈ Z} or R - {x : x = nπ, n ∈ Z} and 

the range set is the set {y : y ∈ R and y ≥ 1 or y ≤ -1} 

i.e., the set R - (-1,1).

It means that y = cosec x assumes all real values except -1 < y < 1 and is not defined for the integral multiple of π.

Hence, the correct answer is option 2).

Trigonometric Functions Question 3:

If \(\rm \frac{x}{\cos \theta}=\frac{y}{\cos \left(\frac{2\pi}{3}-\theta\right)}=\frac{z}{\cos\left(\frac{2\pi}{3}+\theta\right)}\) then what is x + y + z equal to? 

  1. -1
  2. 0
  3. 1
  4. 3

Answer (Detailed Solution Below)

Option 2 : 0

Trigonometric Functions Question 3 Detailed Solution

Explanation:

Given:

⇒ \(\rm \frac{x}{\cos θ}=\frac{y}{\cos \left(\frac{2\pi}{3}-θ\right)}=\frac{z}{\cos\left(\frac{2\pi}{3}+θ\right)}\) = k (say)

⇒ x = kcosθ

⇒ y = k \(cos\frac{2\pi }{3} -θ \)

⇒ z = k \(cos\frac{2\pi }{3} +θ \)

Now, x + y + z = k [cosθ + cos \((\frac{2\pi }{3} -θ) + cos(\frac{2\pi }{3} +θ)\)]

= k [cosθ + 2cos\(\frac{2\pi }{3}cosθ \)]

= k[cosθ + 2 (\(-\frac{1}{2}) cosθ \)]

= k[cosθ- cosθ ] =0

⇒ x + y + z =0

∴ Option (b) is correct.

Trigonometric Functions Question 4:

What is \(\rm \frac{\cos 17^\circ-\sin 17^\circ}{\cos 17^\circ+\sin ^\circ}\) equal to

  1. tan 34° 
  2. cot 34° 
  3. tan 62° 
  4. cot 62° 

Answer (Detailed Solution Below)

Option 4 : cot 62° 

Trigonometric Functions Question 4 Detailed Solution

Explanation:

⇒ \(\frac{cos17°- sin17°}{cos17°+ sin17°} = \frac{cos17°(1-\frac{sin 17°}{Cos17°})}{cos17°(1+\frac{sin 17°}{Cos17°})}\) 

\(\frac{1-\tan17°}{1+\tan17°}\) 

\(\frac{tan 45° - tan17°}{1 + tan 45°. tan17°}\)

= tan 28° = Cot 62°

∴ the Correct answer is Option 4.

Trigonometric Functions Question 5:

What is the number of solutions of the equation cot2x cot3x = 1 for 0 < x

  1. Only one
  2. Only two
  3. Only five
  4. More than five

Answer (Detailed Solution Below)

Option 3 : Only five

Trigonometric Functions Question 5 Detailed Solution

Explanation:

Given

cot2x. cot3x = 1

⇒ cos2x. cos3x – sin2x.sin3x= 0

⇒ cos(2x+3x) = cos5x = 0    0 < x < π 

Hence 5x = \(\frac{\pi }{2}, \frac{3\pi }{2}, \frac{5\pi }{2}, \frac{7\pi }{2}, \frac{9\pi }{2}\)

⇒ x = \(\frac{\pi }{10}, \frac{3\pi }{10}, \frac{5\pi }{10}, \frac{7\pi }{10}, \frac{9\pi }{10}\)

Thus, only five solutions are possible

∴ the correct answer is option C

Top Trigonometric Functions MCQ Objective Questions

Simplify \(\frac{{\left( {1 - {\rm{sinAcosA}}} \right)\left( {{\rm{si}}{{\rm{n}}^2}{\rm{A}} - {\rm{co}}{{\rm{s}}^2}{\rm{A}}} \right)}}{{{\rm{cosA}}\left( {{\rm{secA}} - {\rm{cosecA}}} \right)\left( {{\rm{si}}{{\rm{n}}^3}{\rm{A}} + {\rm{co}}{{\rm{s}}^3}{\rm{A}}} \right)}}\)

  1. sin A
  2. cos A
  3. sec A
  4. cosec A

Answer (Detailed Solution Below)

Option 1 : sin A

Trigonometric Functions Question 6 Detailed Solution

Download Solution PDF

Concept:

a2 - b2 = (a - b) (a + b)

sec x = 1/cos x and cosec x = 1/sin x

a3 + b3 = (a + b) (a2 + b2 - ab)

Calculation:

 \(\frac{{\left( {1 - {\rm{sinAcosA}}} \right)\left( {{\rm{si}}{{\rm{n}}^2}{\rm{A}} - {\rm{co}}{{\rm{s}}^2}{\rm{A}}} \right)}}{{{\rm{cosA}}\left( {{\rm{secA}} - {\rm{cosecA}}} \right)\left( {{\rm{si}}{{\rm{n}}^3}{\rm{A}} + {\rm{co}}{{\rm{s}}^3}{\rm{A}}} \right)}}\) 

⇒ \( \frac{{\left( {{\rm{1}} - {\rm{sinAcosA}}} \right)\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {{\rm{sinA}} - {\rm{cosA}}} \right)}}{{{\rm{cosA}}\left[ {\frac{1}{{{\rm{cosA}}}} - \frac{1}{{{\rm{sinA}}}}} \right]\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {{\rm{si}}{{\rm{n}}^2}{\rm{A}} + {\rm{co}}{{\rm{s}}^2}{\rm{A}} - {\rm{sinAcosA}}} \right)}}\)

⇒ \( \frac{{\left( {1 - {\rm{sinAcosA}}} \right)\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {{\rm{sinA}} - {\rm{cosA}}} \right)}}{{{\rm{cosA}}\left[ {\frac{{{\rm{sinA}} - {\rm{cosA}}}}{{{\rm{sinA}}.{\rm{cosA}}}}} \right]\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {1 - {\rm{sinAcosA}}} \right)}}\)

⇒ \(\frac{sinA - cosA}{cosA[\frac{sinA - cosA}{sinA.cosA}]}\)

⇒ \(\frac{(sinA - cosA)\times sinA.cosA}{cosA[sinA - cosA]}\)

⇒ \(\frac{ sinA.cosA}{cosA}\)

⇒ sin A

∴ The correct answer is option (1).

Find the value of cos 4x

  1. 1 + 8 sin2 x + 8 sin4 x
  2. 1 - 8 sin2 x + 8 sin4 x
  3. 8 sin2 x + 8 sin4 x - 1
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : 1 - 8 sin2 x + 8 sin4 x

Trigonometric Functions Question 7 Detailed Solution

Download Solution PDF

Concept:

cos 2x = cos2 x – sin2 x = 2 cos2 x - 1 = 1 – 2 sin2 x

Calculation:

cos 4x

= cos 2(2x)

= 2 cos2 2x – 1                                         (∵cos 2x = 2 cos2 x – 1)

= 2 (1 – 2 sin2 x)2 – 1                              (∵ cos 2x = 1 – 2 sin2 x)

= 2 [1 – 4 sin2 x + 4 sin4 x] – 1               [∵ (a – b)2 = a2 – 2ab + b2]

= 2 - 8 sin2 x + 8 sin4 x – 1

= 1 - 8 sin2 x + 8 sin4 x

Find the general solution of the equation 4 sin 3x = 2?

  1. n × (π/3) + (- 1)n × (π/18), where n ∈ Z
  2. n × (- π/3) + (- 1)n × (π/18), where n ∈ Z
  3. n × (π/3) + (- 1)n × (5π/18), where n ∈ Z
  4. None of these

Answer (Detailed Solution Below)

Option 1 : n × (π/3) + (- 1)n × (π/18), where n ∈ Z

Trigonometric Functions Question 8 Detailed Solution

Download Solution PDF

Concept:

If sin θ = sin α then θ = nπ + (- 1)n α, α ∈ [-π/2, π/2], n ∈ Z.

T-Ratios

30°

45°

60°

90°

Sin

0

1/2

1/√2

√3/2

1

Cos

1

√3/2

1/√2

1/2

0

Tan

0

1/√3

1

√3

Not defined

 

Calculation:

Given: 4 sin 3x = 2

⇒ sin 3x = ½

As we know that, sin (π/6) = ½

⇒ sin 3x = sin (π/6)

As we know that, if sin θ = sin α then

θ = nπ + (- 1)n α, α ∈ [-π/2, π/2], n ∈ Z.

⇒ 3x = nπ + (- 1)n × (π/6), where n ∈ Z.

⇒ x = n × (π/3) + (- 1)n × (π/18), where n ∈ Z.

Find general solution of cos x = 1

  1. x = 2nπ, n ∈ Z
  2. x = 2nπ - 1, n ∈ Z
  3. x = 2nπ + 1, n ∈ Z
  4. None of the above

Answer (Detailed Solution Below)

Option 1 : x = 2nπ, n ∈ Z

Trigonometric Functions Question 9 Detailed Solution

Download Solution PDF

Concept:

General solution of some standard trigonometric equations:

Equations

Solutions

Conditions

 sin θ = sin α

 θ = nπ + (-1)n α

 α ∈ [-π/2, π/2] and n ∈ z

 cos θ = cos α

 θ = 2nπ ± α

 α ∈ [0, π] and n ∈ z 

 tan θ = tan α

 θ = nπ + α

 α ∈ (-π/2, π/2) and n ∈ z

 

Calculation:

Given: cos x = 1

⇒ cos x = cos 0

As we know, If cos θ = cos α then θ = 2nπ ± α

Therefore, x = 2nπ ± 0 = 2nπ 

Hence, the general solution of cos x = 1 is x = 2nπ, n ∈ Z.

If 4sin2x -  2 cos2x = 2,then find the value of tan x?

  1. √3
  2. √2
  3. None of these

Answer (Detailed Solution Below)

Option 2 : √2

Trigonometric Functions Question 10 Detailed Solution

Download Solution PDF

Concept:

sin2x + cos2x = 1

Calculations:

Given, 4sin2x -  2 cos2x = 2

⇒2sin2x -  cos2x = 1

⇒ 2sin2x -  cos2x = sin2x + cos2x

⇒ sin2x = 2 cos2x

⇒tan2 x = 2

⇒ tan x = √2

If 7 sinθ + 24 cosθ = 25, then what is the value of (sin θ + cos θ)?

  1. 1
  2. \(\dfrac{26}{25}\)
  3. \(\dfrac{6}{5}\)
  4. \(\dfrac{31}{25}\)

Answer (Detailed Solution Below)

Option 4 : \(\dfrac{31}{25}\)

Trigonometric Functions Question 11 Detailed Solution

Download Solution PDF

Concept:

\(\rm \sin \theta = \frac{Perpendicular}{Hypotenuse}\)

\(\rm \cos \theta = \frac{Base}{Hypotenuse} \)

sinθ + cosθ = 1 

Calculation:

7 sinθ + 24 cosθ = 25

Dividing by 25 on both the sides, we get

\(\rm \frac{7}{25}\)sinθ + \(\rm \frac{24}{25}\)cosθ = 1      ....(i)

We know that,

sin2 θ + cosθ = 1  

sin θ.sin θ + cos θ.cos θ = 1      ....(ii)

On comparing equ (i) and (ii)

sin θ = \(\rm \frac{7}{25}\) 

cos θ = \(\rm \frac{24}{25}\)

Now, (sinθ + cosθ) 

\(\rm \frac{7}{25}\)\(\rm \frac{24}{25}\)

\(\rm \frac{31}{25}\)

What is cot 2x cot 4x - cot 4x cot 6x - cot 6x cot 2x equal to

  1. -1
  2. 0
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Trigonometric Functions Question 12 Detailed Solution

Download Solution PDF

Concept:

\(\rm cot (A + B) = \dfrac{cot A cot B - 1}{cot A + cot B}\)

Calculation:

Given,

(cot 2x ∙ cot 4x) - (cot 4x  cot 6x) - (cot 6x  cot 2x)

⇒ (cot 2x  cot 4x) - cot 6x [cot 4x + cot 2x]

(cot 2x  cot 4x) - cot (2x + 4x) [cot 4x + cot 2x]

(cot 2x  cot 4x) -  \((\rm \dfrac{cot 2x .cot 4x - 1}{cot 2x + cot 4x})\)× [cot 4x + cot 2x]

(cot 2x  cot 4x) - (cot 2x  cot 4 x - 1)

(cot 2x  cot 4x) - (cot 2x  cot 4x) + 1

1

Find the general solution of the equation 8 tan(2x) – 5 = 3?

  1. nπ + (π/8), where n ∈ Z
  2. n (π/4) + (π/8), where n ∈ Z
  3. n (π/2) + (π/8), where n ∈ Z
  4. None of these

Answer (Detailed Solution Below)

Option 3 : n (π/2) + (π/8), where n ∈ Z

Trigonometric Functions Question 13 Detailed Solution

Download Solution PDF

Concept:

If tan θ = tan α then θ = nπ + α, α ∈ (-π/2, π/2), n ∈ Z.

T-Ratios

30°

45°

60°

90°

Sin

0

1/2

1/√2

√3/2

1

Cos

1

√3/2

1/√2

½

0

Tan

0

1/√3

1

√3

Not defined

 

Calculation:

Given: 8 tan(2x) – 5 = 3

⇒ 8 tan(2x) = 8

⇒ tan 2x = 1

As we know that, tan (π/4) = 1

⇒ tan 2x = tan (π/4)

As we know that, if tan θ = tan α then θ = nπ + α, α ∈ (-π/2, π/2), n ∈ Z.

⇒ 2x = nπ + (π/4), where n ∈ Z.

⇒ x = n (π/2) + (π/8), where n ∈ Z.

A and B are positive acute angles such that cos 2B = 3 sin2 A and 3 sin 2A = 2 sin 2B. What is the value of (A + 2B)?

  1. π / 6
  2. π / 4
  3. π / 3
  4. π / 2

Answer (Detailed Solution Below)

Option 4 : π / 2

Trigonometric Functions Question 14 Detailed Solution

Download Solution PDF

Concept:

cos (A + B) = cosA. cosB - sinA. sin B

Calculation:

Given: cos 2B = 3 sin2 A   .... (1)

and  3sin 2A = 2 sin 2B     .... (2)

Divide (1) by (2),

\(\frac{cos(2B)}{2sin(2B)}=\frac{3sin^2(A)}{3sin(2A)}\) .... (3)

We know that,

sin 2A = 2 sin A∙ cos A

Hence, equation (3) becomes,

\(\frac{cos(2B)}{2sin(2B)}=\frac{sin^2(A)}{2sin(A)cos(A)}\)

⇒ \(\frac{cos(2B)}{sin(2B)}=\frac{sin(A)}{cos(A)}\)

⇒ cos (2B) cos (A) = sin (2B) sin (A)

⇒ cos (2B) cos (A) - sin (2B) sin (A) = 0

From above concept,

cos (A + 2B) = 0

⇒ (A + 2B) = cos-1 (0)

⇒ (A + 2B) =  π/2

What is the value of 2 sin 75° cos 75° ?

  1. \(\frac 12\)
  2. \(\frac 1 {\sqrt 2}\)
  3. \(\frac {\sqrt 3}2\)
  4. None of these

Answer (Detailed Solution Below)

Option 1 : \(\frac 12\)

Trigonometric Functions Question 15 Detailed Solution

Download Solution PDF

Concept:

2sinx cos x = sin 2x

sin (90° + x) = cos x

Calculation:

Given, 2 sin 75° cos 75°

= sin [2 (75°)]

= sin (150°)

= sin (90° + 60°)

= cos 60°

\(\rm \dfrac 1 2\)

Hence, the value of 2 sin 75° cos 75° is \(\rm \dfrac 1 2\)

Get Free Access Now
Hot Links: teen patti master king lotus teen patti teen patti winner teen patti noble