Trigonometric Functions MCQ Quiz - Objective Question with Answer for Trigonometric Functions - Download Free PDF

Last updated on Jul 1, 2025

Latest Trigonometric Functions MCQ Objective Questions

Trigonometric Functions Question 1:

The number of solutions of the equation \(\sin (\frac{\pi x }{3\sqrt{2}}) = x^2-4x+6 \)  is 

  1. is zero
  2. is only one 
  3. is only two
  4. is greater than 2

Answer (Detailed Solution Below)

Option 1 : is zero

Trigonometric Functions Question 1 Detailed Solution

Concept:

  • Range of Sine Function: The output of the sine function is always between −1 and 1, i.e., sin(θ) ∈ [−1, 1] for all real θ.
  • Quadratic Function: A quadratic function of the form ax2 + bx + c represents a parabola. If a > 0, the parabola opens upward, and its minimum value occurs at x = −b / 2a.
  • Key Idea: To find how many solutions exist for sin(expression) = quadratic, we determine how many values of x make the quadratic expression lie within [−1, 1].

 

Calculation:

Given,

\(\sin (\frac{\pi x }{3\sqrt{2}}) = x^2-4x+6 \)   

Let f(x) = x2 − 4x + 6

Minimum of f(x) occurs at:

x = 4 / 2 = 2

⇒ f(2) = (2)2 − 4×2 + 6 = 4 − 8 + 6 = 2

Since the parabola opens upward, the range of f(x) is [2, ∞)

But, sin(θ) ∈ [−1, 1]

⇒ The equation has solutions only if x2 − 4x + 6 ∈ [−1, 1]

But f(x) ≥ 2 for all x, and 2 > 1

⇒ No value of x satisfies f(x) ∈ [−1, 1]

∴ Number of real solutions is zero.

Trigonometric Functions Question 2:

Comprehension:

Let  \(x = \sec \theta - \cos \theta \text{ and } y = \sec^4 \theta - \cos^4 \theta \\ \) 

What  \(\left[ \frac{x^2+4}{y^2+4} \frac{dy}{dx} \left( x^2+4 \frac{d^2y}{dx^2} - 16y \right) \right] \)  equal to?

  1. \(16x\)
  2. \(16y\)
  3. \(-16x\)
  4. \(-16y\)

Answer (Detailed Solution Below)

Option 1 : \(16x\)

Trigonometric Functions Question 2 Detailed Solution

- amglogisticsinc.net

Calculation:

Given,

\(x = \sec\theta - \cos\theta\)

\(y = \sec^4\theta - \cos^4\theta\)

We know from before:

\(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = \frac{16\,(y^{2}+4)}{\,x^{2}+4\,} \)

Differentiate both sides w.r.t. x:

\(\displaystyle \frac{d}{dx}\Bigl[(x^{2}+4)\bigl(\tfrac{dy}{dx}\bigr)^{2}\Bigr] = \frac{d}{dx}\bigl[16\,(y^{2}+4)\bigr] \)

This yields the differential relation:

\(\displaystyle (x^{2}+4)\,\frac{d^{2}y}{dx^{2}} \;+\;x\,\frac{dy}{dx} \;-\;16\,y \;=\;0\)

The required expression is

\(\displaystyle \frac{x^{2}+4}{y^{2}+4}\,\frac{dy}{dx} \Bigl[(x^{2}+4)\frac{d^{2}y}{dx^{2}}-16y\Bigr] \)

From the differential relation,

\(\displaystyle (x^{2}+4)\frac{d^{2}y}{dx^{2}}-16y = -\,x\,\frac{dy}{dx} \)

So the expression becomes

\(\displaystyle \frac{x^{2}+4}{y^{2}+4}\,\frac{dy}{dx}\, \bigl(-x\,\tfrac{dy}{dx}\bigr) = -\,x\,\frac{x^{2}+4}{y^{2}+4} \Bigl(\frac{dy}{dx}\Bigr)^{2} \)

Using \(\bigl(\tfrac{dy}{dx}\bigr)^{2} = \tfrac{16\,(y^{2}+4)}{x^{2}+4}\), all factors cancel except -16x.

∴  The value of the given expression is  \(-16x\).

Hence, the correct answer is Option 3. 

Trigonometric Functions Question 3:

Comprehension:

Let  \(x = \sec \theta - \cos \theta \text{ and } y = \sec^4 \theta - \cos^4 \theta \\ \) 

What is \((\frac{dy}{dx})^2\) equal to?

  1. \(\frac{4(y^2+4)}{(x^2+4)}\)
  2. \(\frac{4(y^2-4)}{(x^2-4)}\)
  3. \(\frac{16(y^2+4)}{(x^2+4)}\)
  4. \(\frac{16(y^2-4)}{(x^2-4)}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{4(y^2+4)}{(x^2+4)}\)

Trigonometric Functions Question 3 Detailed Solution

- amglogisticsinc.net

Calculation:

Given,

\(x = \sec\theta - \cos\theta \)

\(y = \sec^4\theta - \cos^4\theta\)

Compute derivatives w.r.t. θ" id="MathJax-Element-5-Frame" role="presentation" style="position: relative;" tabindex="0">θ :

\(\dfrac{dx}{d\theta} = \sec\theta\,\tan\theta + \sin\theta\)

\(\dfrac{dy}{d\theta} = 4\sec^4\theta\,\tan\theta \;+\; 4\cos^3\theta\,\sin\theta\)

From the ratio \(\displaystyle \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}\)

\(\dfrac{dy}{dx} = \frac{4\bigl(\sec^4\theta\,\tan\theta + \cos^3\theta\,\sin\theta\bigr)} {\sec\theta\,\tan\theta + \sin\theta}\)

Using identities \(x^2 = \sec^2\theta + \cos^2\theta - 2\), \(\sec^3\theta + \cos^5\theta)^2 = y^2 + 4\), and \((1 + \cos^2\theta)^2 = x^2 + 4,\)

\(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = 16 \,\frac{\,y^{2} + 4\,}{\,x^{2} + 4\,} \)

∴  \(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = 16\,\frac{y^{2} + 4}{x^{2} + 4} \)

Hence, the correct answer is Option 3.

Trigonometric Functions Question 4:

Let \(x = \sec \theta - \cos \theta \text{ and } y = \sec^4 \theta - \cos^4 \theta \\ \) What is \(\left[ \frac{x^2+4}{y^2+4} \frac{dy}{dx} \left( x^2+4 \frac{d^2y}{dx^2} - 16y \right) \right] \) equal to?

  1. \(16x\)
  2. \(16y\)
  3. \(-16x \)
  4. \(-16y\)

Answer (Detailed Solution Below)

Option 3 : \(-16x \)

Trigonometric Functions Question 4 Detailed Solution

- amglogisticsinc.net

Calculation:

Given,

\(x = \sec\theta - \cos\theta\)

\(y = \sec^4\theta - \cos^4\theta\)

We know from before:

\(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = \frac{16\,(y^{2}+4)}{\,x^{2}+4\,} \)

Differentiate both sides w.r.t. x:

\(\displaystyle \frac{d}{dx}\Bigl[(x^{2}+4)\bigl(\tfrac{dy}{dx}\bigr)^{2}\Bigr] = \frac{d}{dx}\bigl[16\,(y^{2}+4)\bigr] \)

This yields the differential relation:

\(\displaystyle (x^{2}+4)\,\frac{d^{2}y}{dx^{2}} \;+\;x\,\frac{dy}{dx} \;-\;16\,y \;=\;0\)

The required expression is

\(\displaystyle \frac{x^{2}+4}{y^{2}+4}\,\frac{dy}{dx} \Bigl[(x^{2}+4)\frac{d^{2}y}{dx^{2}}-16y\Bigr] \)

From the differential relation,

\(\displaystyle (x^{2}+4)\frac{d^{2}y}{dx^{2}}-16y = -\,x\,\frac{dy}{dx} \)

So the expression becomes

\(\displaystyle \frac{x^{2}+4}{y^{2}+4}\,\frac{dy}{dx}\, \bigl(-x\,\tfrac{dy}{dx}\bigr) = -\,x\,\frac{x^{2}+4}{y^{2}+4} \Bigl(\frac{dy}{dx}\Bigr)^{2} \)

Using \(\bigl(\tfrac{dy}{dx}\bigr)^{2} = \tfrac{16\,(y^{2}+4)}{x^{2}+4}\), all factors cancel except -16x.

∴  The value of the given expression is  \(-16x\).

Hence, the correct answer is Option 3. 

Trigonometric Functions Question 5:

Let \(x = \sec \theta - \cos \theta \text{ and } y = \sec^4 \theta - \cos^4 \theta \\ \) What is \((\frac{dy}{dx})^2\) equal to?

  1. \(\frac{4(y^2+4)}{(x^2+4)}\)
  2. \(\frac{4(y^2-4)}{(x^2-4)}\)
  3. \(\frac{16(y^2+4)}{(x^2+4)}\)
  4. \(\frac{16(y^2-4)}{(x^2-4)}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{16(y^2+4)}{(x^2+4)}\)

Trigonometric Functions Question 5 Detailed Solution

- amglogisticsinc.net

Calculation:

Given,

\(x = \sec\theta - \cos\theta\)

\(y = \sec^4\theta - \cos^4\theta\)

Compute derivatives w.r.t. \(\theta\):

\(\dfrac{dx}{d\theta} = \sec\theta\,\tan\theta + \sin\theta\)

\(\dfrac{dy}{d\theta} = 4\sec^4\theta\,\tan\theta \;+\; 4\cos^3\theta\,\sin\theta\)

From the ratio \(\displaystyle \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}\)

\(\dfrac{dy}{dx} = \frac{4\bigl(\sec^4\theta\,\tan\theta + \cos^3\theta\,\sin\theta\bigr)} {\sec\theta\,\tan\theta + \sin\theta}\)

Using identities \(x^2 = \sec^2\theta + \cos^2\theta - 2\), \(\sec^3\theta + \cos^5\theta)^2 = y^2 + 4\), and \((1 + \cos^2\theta)^2 = x^2 + 4,\)

\(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = 16 \,\frac{\,y^{2} + 4\,}{\,x^{2} + 4\,} \)

∴  \(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = 16\,\frac{y^{2} + 4}{x^{2} + 4} \)

Hence, the correct answer is Option 3.

Top Trigonometric Functions MCQ Objective Questions

Simplify \(\frac{{\left( {1 - {\rm{sinAcosA}}} \right)\left( {{\rm{si}}{{\rm{n}}^2}{\rm{A}} - {\rm{co}}{{\rm{s}}^2}{\rm{A}}} \right)}}{{{\rm{cosA}}\left( {{\rm{secA}} - {\rm{cosecA}}} \right)\left( {{\rm{si}}{{\rm{n}}^3}{\rm{A}} + {\rm{co}}{{\rm{s}}^3}{\rm{A}}} \right)}}\)

  1. sin A
  2. cos A
  3. sec A
  4. cosec A

Answer (Detailed Solution Below)

Option 1 : sin A

Trigonometric Functions Question 6 Detailed Solution

Download Solution PDF

Concept:

a2 - b2 = (a - b) (a + b)

sec x = 1/cos x and cosec x = 1/sin x

a3 + b3 = (a + b) (a2 + b2 - ab)

Calculation:

 \(\frac{{\left( {1 - {\rm{sinAcosA}}} \right)\left( {{\rm{si}}{{\rm{n}}^2}{\rm{A}} - {\rm{co}}{{\rm{s}}^2}{\rm{A}}} \right)}}{{{\rm{cosA}}\left( {{\rm{secA}} - {\rm{cosecA}}} \right)\left( {{\rm{si}}{{\rm{n}}^3}{\rm{A}} + {\rm{co}}{{\rm{s}}^3}{\rm{A}}} \right)}}\) 

⇒ \( \frac{{\left( {{\rm{1}} - {\rm{sinAcosA}}} \right)\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {{\rm{sinA}} - {\rm{cosA}}} \right)}}{{{\rm{cosA}}\left[ {\frac{1}{{{\rm{cosA}}}} - \frac{1}{{{\rm{sinA}}}}} \right]\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {{\rm{si}}{{\rm{n}}^2}{\rm{A}} + {\rm{co}}{{\rm{s}}^2}{\rm{A}} - {\rm{sinAcosA}}} \right)}}\)

⇒ \( \frac{{\left( {1 - {\rm{sinAcosA}}} \right)\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {{\rm{sinA}} - {\rm{cosA}}} \right)}}{{{\rm{cosA}}\left[ {\frac{{{\rm{sinA}} - {\rm{cosA}}}}{{{\rm{sinA}}.{\rm{cosA}}}}} \right]\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {1 - {\rm{sinAcosA}}} \right)}}\)

⇒ \(\frac{sinA - cosA}{cosA[\frac{sinA - cosA}{sinA.cosA}]}\)

⇒ \(\frac{(sinA - cosA)\times sinA.cosA}{cosA[sinA - cosA]}\)

⇒ \(\frac{ sinA.cosA}{cosA}\)

⇒ sin A

∴ The correct answer is option (1).

Find the value of cos 4x

  1. 1 + 8 sin2 x + 8 sin4 x
  2. 1 - 8 sin2 x + 8 sin4 x
  3. 8 sin2 x + 8 sin4 x - 1
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : 1 - 8 sin2 x + 8 sin4 x

Trigonometric Functions Question 7 Detailed Solution

Download Solution PDF

Concept:

cos 2x = cos2 x – sin2 x = 2 cos2 x - 1 = 1 – 2 sin2 x

Calculation:

cos 4x

= cos 2(2x)

= 2 cos2 2x – 1                                         (∵cos 2x = 2 cos2 x – 1)

= 2 (1 – 2 sin2 x)2 – 1                              (∵ cos 2x = 1 – 2 sin2 x)

= 2 [1 – 4 sin2 x + 4 sin4 x] – 1               [∵ (a – b)2 = a2 – 2ab + b2]

= 2 - 8 sin2 x + 8 sin4 x – 1

= 1 - 8 sin2 x + 8 sin4 x

Find the general solution of the equation 4 sin 3x = 2?

  1. n × (π/3) + (- 1)n × (π/18), where n ∈ Z
  2. n × (- π/3) + (- 1)n × (π/18), where n ∈ Z
  3. n × (π/3) + (- 1)n × (5π/18), where n ∈ Z
  4. None of these

Answer (Detailed Solution Below)

Option 1 : n × (π/3) + (- 1)n × (π/18), where n ∈ Z

Trigonometric Functions Question 8 Detailed Solution

Download Solution PDF

Concept:

If sin θ = sin α then θ = nπ + (- 1)n α, α ∈ [-π/2, π/2], n ∈ Z.

T-Ratios

30°

45°

60°

90°

Sin

0

1/2

1/√2

√3/2

1

Cos

1

√3/2

1/√2

1/2

0

Tan

0

1/√3

1

√3

Not defined

 

Calculation:

Given: 4 sin 3x = 2

⇒ sin 3x = ½

As we know that, sin (π/6) = ½

⇒ sin 3x = sin (π/6)

As we know that, if sin θ = sin α then

θ = nπ + (- 1)n α, α ∈ [-π/2, π/2], n ∈ Z.

⇒ 3x = nπ + (- 1)n × (π/6), where n ∈ Z.

⇒ x = n × (π/3) + (- 1)n × (π/18), where n ∈ Z.

Find general solution of cos x = 1

  1. x = 2nπ, n ∈ Z
  2. x = 2nπ - 1, n ∈ Z
  3. x = 2nπ + 1, n ∈ Z
  4. None of the above

Answer (Detailed Solution Below)

Option 1 : x = 2nπ, n ∈ Z

Trigonometric Functions Question 9 Detailed Solution

Download Solution PDF

Concept:

General solution of some standard trigonometric equations:

Equations

Solutions

Conditions

 sin θ = sin α

 θ = nπ + (-1)n α

 α ∈ [-π/2, π/2] and n ∈ z

 cos θ = cos α

 θ = 2nπ ± α

 α ∈ [0, π] and n ∈ z 

 tan θ = tan α

 θ = nπ + α

 α ∈ (-π/2, π/2) and n ∈ z

 

Calculation:

Given: cos x = 1

⇒ cos x = cos 0

As we know, If cos θ = cos α then θ = 2nπ ± α

Therefore, x = 2nπ ± 0 = 2nπ 

Hence, the general solution of cos x = 1 is x = 2nπ, n ∈ Z.

If 4sin2x -  2 cos2x = 2,then find the value of tan x?

  1. √3
  2. √2
  3. None of these

Answer (Detailed Solution Below)

Option 2 : √2

Trigonometric Functions Question 10 Detailed Solution

Download Solution PDF

Concept:

sin2x + cos2x = 1

Calculations:

Given, 4sin2x -  2 cos2x = 2

⇒2sin2x -  cos2x = 1

⇒ 2sin2x -  cos2x = sin2x + cos2x

⇒ sin2x = 2 cos2x

⇒tan2 x = 2

⇒ tan x = √2

What is cot 2x cot 4x - cot 4x cot 6x - cot 6x cot 2x equal to

  1. -1
  2. 0
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Trigonometric Functions Question 11 Detailed Solution

Download Solution PDF

Concept:

\(\rm cot (A + B) = \dfrac{cot A cot B - 1}{cot A + cot B}\)

Calculation:

Given,

(cot 2x ∙ cot 4x) - (cot 4x  cot 6x) - (cot 6x  cot 2x)

⇒ (cot 2x  cot 4x) - cot 6x [cot 4x + cot 2x]

(cot 2x  cot 4x) - cot (2x + 4x) [cot 4x + cot 2x]

(cot 2x  cot 4x) -  \((\rm \dfrac{cot 2x .cot 4x - 1}{cot 2x + cot 4x})\)× [cot 4x + cot 2x]

(cot 2x  cot 4x) - (cot 2x  cot 4 x - 1)

(cot 2x  cot 4x) - (cot 2x  cot 4x) + 1

1

If 7 sinθ + 24 cosθ = 25, then what is the value of (sin θ + cos θ)?

  1. 1
  2. \(\dfrac{26}{25}\)
  3. \(\dfrac{6}{5}\)
  4. \(\dfrac{31}{25}\)

Answer (Detailed Solution Below)

Option 4 : \(\dfrac{31}{25}\)

Trigonometric Functions Question 12 Detailed Solution

Download Solution PDF

Concept:

\(\rm \sin \theta = \frac{Perpendicular}{Hypotenuse}\)

\(\rm \cos \theta = \frac{Base}{Hypotenuse} \)

sinθ + cosθ = 1 

Calculation:

7 sinθ + 24 cosθ = 25

Dividing by 25 on both the sides, we get

\(\rm \frac{7}{25}\)sinθ + \(\rm \frac{24}{25}\)cosθ = 1      ....(i)

We know that,

sin2 θ + cosθ = 1  

sin θ.sin θ + cos θ.cos θ = 1      ....(ii)

On comparing equ (i) and (ii)

sin θ = \(\rm \frac{7}{25}\) 

cos θ = \(\rm \frac{24}{25}\)

Now, (sinθ + cosθ) 

\(\rm \frac{7}{25}\)\(\rm \frac{24}{25}\)

\(\rm \frac{31}{25}\)

A and B are positive acute angles such that cos 2B = 3 sin2 A and 3 sin 2A = 2 sin 2B. What is the value of (A + 2B)?

  1. π / 6
  2. π / 4
  3. π / 3
  4. π / 2

Answer (Detailed Solution Below)

Option 4 : π / 2

Trigonometric Functions Question 13 Detailed Solution

Download Solution PDF

Concept:

cos (A + B) = cosA. cosB - sinA. sin B

Calculation:

Given: cos 2B = 3 sin2 A   .... (1)

and  3sin 2A = 2 sin 2B     .... (2)

Divide (1) by (2),

\(\frac{cos(2B)}{2sin(2B)}=\frac{3sin^2(A)}{3sin(2A)}\) .... (3)

We know that,

sin 2A = 2 sin A∙ cos A

Hence, equation (3) becomes,

\(\frac{cos(2B)}{2sin(2B)}=\frac{sin^2(A)}{2sin(A)cos(A)}\)

⇒ \(\frac{cos(2B)}{sin(2B)}=\frac{sin(A)}{cos(A)}\)

⇒ cos (2B) cos (A) = sin (2B) sin (A)

⇒ cos (2B) cos (A) - sin (2B) sin (A) = 0

From above concept,

cos (A + 2B) = 0

⇒ (A + 2B) = cos-1 (0)

⇒ (A + 2B) =  π/2

Find the general solution of the equation 8 tan(2x) – 5 = 3?

  1. nπ + (π/8), where n ∈ Z
  2. n (π/4) + (π/8), where n ∈ Z
  3. n (π/2) + (π/8), where n ∈ Z
  4. None of these

Answer (Detailed Solution Below)

Option 3 : n (π/2) + (π/8), where n ∈ Z

Trigonometric Functions Question 14 Detailed Solution

Download Solution PDF

Concept:

If tan θ = tan α then θ = nπ + α, α ∈ (-π/2, π/2), n ∈ Z.

T-Ratios

30°

45°

60°

90°

Sin

0

1/2

1/√2

√3/2

1

Cos

1

√3/2

1/√2

½

0

Tan

0

1/√3

1

√3

Not defined

 

Calculation:

Given: 8 tan(2x) – 5 = 3

⇒ 8 tan(2x) = 8

⇒ tan 2x = 1

As we know that, tan (π/4) = 1

⇒ tan 2x = tan (π/4)

As we know that, if tan θ = tan α then θ = nπ + α, α ∈ (-π/2, π/2), n ∈ Z.

⇒ 2x = nπ + (π/4), where n ∈ Z.

⇒ x = n (π/2) + (π/8), where n ∈ Z.

What is the value of 2 sin 75° cos 75° ?

  1. \(\frac 12\)
  2. \(\frac 1 {\sqrt 2}\)
  3. \(\frac {\sqrt 3}2\)
  4. None of these

Answer (Detailed Solution Below)

Option 1 : \(\frac 12\)

Trigonometric Functions Question 15 Detailed Solution

Download Solution PDF

Concept:

2sinx cos x = sin 2x

sin (90° + x) = cos x

Calculation:

Given, 2 sin 75° cos 75°

= sin [2 (75°)]

= sin (150°)

= sin (90° + 60°)

= cos 60°

\(\rm \dfrac 1 2\)

Hence, the value of 2 sin 75° cos 75° is \(\rm \dfrac 1 2\)

Get Free Access Now
Hot Links: teen patti all teen patti rummy teen patti jodi teen patti fun teen patti cash