Trigonometric Functions MCQ Quiz - Objective Question with Answer for Trigonometric Functions - Download Free PDF
Last updated on Jul 1, 2025
Latest Trigonometric Functions MCQ Objective Questions
Trigonometric Functions Question 1:
The number of solutions of the equation \(\sin (\frac{\pi x }{3\sqrt{2}}) = x^2-4x+6 \) is
Answer (Detailed Solution Below)
Trigonometric Functions Question 1 Detailed Solution
Concept:
- Range of Sine Function: The output of the sine function is always between −1 and 1, i.e., sin(θ) ∈ [−1, 1] for all real θ.
- Quadratic Function: A quadratic function of the form ax2 + bx + c represents a parabola. If a > 0, the parabola opens upward, and its minimum value occurs at x = −b / 2a.
- Key Idea: To find how many solutions exist for sin(expression) = quadratic, we determine how many values of x make the quadratic expression lie within [−1, 1].
Calculation:
Given,
\(\sin (\frac{\pi x }{3\sqrt{2}}) = x^2-4x+6 \)
Let f(x) = x2 − 4x + 6
Minimum of f(x) occurs at:
x = 4 / 2 = 2
⇒ f(2) = (2)2 − 4×2 + 6 = 4 − 8 + 6 = 2
Since the parabola opens upward, the range of f(x) is [2, ∞)
But, sin(θ) ∈ [−1, 1]
⇒ The equation has solutions only if x2 − 4x + 6 ∈ [−1, 1]
But f(x) ≥ 2 for all x, and 2 > 1
⇒ No value of x satisfies f(x) ∈ [−1, 1]
∴ Number of real solutions is zero.
Trigonometric Functions Question 2:
Comprehension:
What \(\left[ \frac{x^2+4}{y^2+4} \frac{dy}{dx} \left( x^2+4 \frac{d^2y}{dx^2} - 16y \right) \right] \) equal to?
Answer (Detailed Solution Below)
Trigonometric Functions Question 2 Detailed Solution
Calculation:
Given,
\(x = \sec\theta - \cos\theta\)
\(y = \sec^4\theta - \cos^4\theta\)
We know from before:
\(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = \frac{16\,(y^{2}+4)}{\,x^{2}+4\,} \)
Differentiate both sides w.r.t. x:
\(\displaystyle \frac{d}{dx}\Bigl[(x^{2}+4)\bigl(\tfrac{dy}{dx}\bigr)^{2}\Bigr] = \frac{d}{dx}\bigl[16\,(y^{2}+4)\bigr] \)
This yields the differential relation:
\(\displaystyle (x^{2}+4)\,\frac{d^{2}y}{dx^{2}} \;+\;x\,\frac{dy}{dx} \;-\;16\,y \;=\;0\)
The required expression is
\(\displaystyle \frac{x^{2}+4}{y^{2}+4}\,\frac{dy}{dx} \Bigl[(x^{2}+4)\frac{d^{2}y}{dx^{2}}-16y\Bigr] \)
From the differential relation,
\(\displaystyle (x^{2}+4)\frac{d^{2}y}{dx^{2}}-16y = -\,x\,\frac{dy}{dx} \)
So the expression becomes
\(\displaystyle \frac{x^{2}+4}{y^{2}+4}\,\frac{dy}{dx}\, \bigl(-x\,\tfrac{dy}{dx}\bigr) = -\,x\,\frac{x^{2}+4}{y^{2}+4} \Bigl(\frac{dy}{dx}\Bigr)^{2} \)
Using \(\bigl(\tfrac{dy}{dx}\bigr)^{2} = \tfrac{16\,(y^{2}+4)}{x^{2}+4}\), all factors cancel except -16x.
∴ The value of the given expression is \(-16x\).
Hence, the correct answer is Option 3.
Trigonometric Functions Question 3:
Comprehension:
What is \((\frac{dy}{dx})^2\) equal to?
Answer (Detailed Solution Below)
Trigonometric Functions Question 3 Detailed Solution
Calculation:
Given,
\(x = \sec\theta - \cos\theta \)
\(y = \sec^4\theta - \cos^4\theta\)
Compute derivatives w.r.t.
\(\dfrac{dx}{d\theta} = \sec\theta\,\tan\theta + \sin\theta\)
\(\dfrac{dy}{d\theta} = 4\sec^4\theta\,\tan\theta \;+\; 4\cos^3\theta\,\sin\theta\)
From the ratio \(\displaystyle \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}\)
\(\dfrac{dy}{dx} = \frac{4\bigl(\sec^4\theta\,\tan\theta + \cos^3\theta\,\sin\theta\bigr)} {\sec\theta\,\tan\theta + \sin\theta}\)
Using identities \(x^2 = \sec^2\theta + \cos^2\theta - 2\), \(\sec^3\theta + \cos^5\theta)^2 = y^2 + 4\), and \((1 + \cos^2\theta)^2 = x^2 + 4,\)
\(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = 16 \,\frac{\,y^{2} + 4\,}{\,x^{2} + 4\,} \)
∴ \(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = 16\,\frac{y^{2} + 4}{x^{2} + 4} \)
Hence, the correct answer is Option 3.
Trigonometric Functions Question 4:
Let \(x = \sec \theta - \cos \theta \text{ and } y = \sec^4 \theta - \cos^4 \theta \\ \) What is \(\left[ \frac{x^2+4}{y^2+4} \frac{dy}{dx} \left( x^2+4 \frac{d^2y}{dx^2} - 16y \right) \right] \) equal to?
Answer (Detailed Solution Below)
Trigonometric Functions Question 4 Detailed Solution
Calculation:
Given,
\(x = \sec\theta - \cos\theta\)
\(y = \sec^4\theta - \cos^4\theta\)
We know from before:
\(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = \frac{16\,(y^{2}+4)}{\,x^{2}+4\,} \)
Differentiate both sides w.r.t. x:
\(\displaystyle \frac{d}{dx}\Bigl[(x^{2}+4)\bigl(\tfrac{dy}{dx}\bigr)^{2}\Bigr] = \frac{d}{dx}\bigl[16\,(y^{2}+4)\bigr] \)
This yields the differential relation:
\(\displaystyle (x^{2}+4)\,\frac{d^{2}y}{dx^{2}} \;+\;x\,\frac{dy}{dx} \;-\;16\,y \;=\;0\)
The required expression is
\(\displaystyle \frac{x^{2}+4}{y^{2}+4}\,\frac{dy}{dx} \Bigl[(x^{2}+4)\frac{d^{2}y}{dx^{2}}-16y\Bigr] \)
From the differential relation,
\(\displaystyle (x^{2}+4)\frac{d^{2}y}{dx^{2}}-16y = -\,x\,\frac{dy}{dx} \)
So the expression becomes
\(\displaystyle \frac{x^{2}+4}{y^{2}+4}\,\frac{dy}{dx}\, \bigl(-x\,\tfrac{dy}{dx}\bigr) = -\,x\,\frac{x^{2}+4}{y^{2}+4} \Bigl(\frac{dy}{dx}\Bigr)^{2} \)
Using \(\bigl(\tfrac{dy}{dx}\bigr)^{2} = \tfrac{16\,(y^{2}+4)}{x^{2}+4}\), all factors cancel except -16x.
∴ The value of the given expression is \(-16x\).
Hence, the correct answer is Option 3.
Trigonometric Functions Question 5:
Let \(x = \sec \theta - \cos \theta \text{ and } y = \sec^4 \theta - \cos^4 \theta \\ \) What is \((\frac{dy}{dx})^2\) equal to?
Answer (Detailed Solution Below)
Trigonometric Functions Question 5 Detailed Solution
Calculation:
Given,
\(x = \sec\theta - \cos\theta\)
\(y = \sec^4\theta - \cos^4\theta\)
Compute derivatives w.r.t. \(\theta\):
\(\dfrac{dx}{d\theta} = \sec\theta\,\tan\theta + \sin\theta\)
\(\dfrac{dy}{d\theta} = 4\sec^4\theta\,\tan\theta \;+\; 4\cos^3\theta\,\sin\theta\)
From the ratio \(\displaystyle \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}\)
\(\dfrac{dy}{dx} = \frac{4\bigl(\sec^4\theta\,\tan\theta + \cos^3\theta\,\sin\theta\bigr)} {\sec\theta\,\tan\theta + \sin\theta}\)
Using identities \(x^2 = \sec^2\theta + \cos^2\theta - 2\), \(\sec^3\theta + \cos^5\theta)^2 = y^2 + 4\), and \((1 + \cos^2\theta)^2 = x^2 + 4,\)
\(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = 16 \,\frac{\,y^{2} + 4\,}{\,x^{2} + 4\,} \)
∴ \(\displaystyle \Bigl(\frac{dy}{dx}\Bigr)^{2} = 16\,\frac{y^{2} + 4}{x^{2} + 4} \)
Hence, the correct answer is Option 3.
Top Trigonometric Functions MCQ Objective Questions
Simplify \(\frac{{\left( {1 - {\rm{sinAcosA}}} \right)\left( {{\rm{si}}{{\rm{n}}^2}{\rm{A}} - {\rm{co}}{{\rm{s}}^2}{\rm{A}}} \right)}}{{{\rm{cosA}}\left( {{\rm{secA}} - {\rm{cosecA}}} \right)\left( {{\rm{si}}{{\rm{n}}^3}{\rm{A}} + {\rm{co}}{{\rm{s}}^3}{\rm{A}}} \right)}}\)
Answer (Detailed Solution Below)
Trigonometric Functions Question 6 Detailed Solution
Download Solution PDFConcept:
a2 - b2 = (a - b) (a + b)
sec x = 1/cos x and cosec x = 1/sin x
a3 + b3 = (a + b) (a2 + b2 - ab)
Calculation:
\(\frac{{\left( {1 - {\rm{sinAcosA}}} \right)\left( {{\rm{si}}{{\rm{n}}^2}{\rm{A}} - {\rm{co}}{{\rm{s}}^2}{\rm{A}}} \right)}}{{{\rm{cosA}}\left( {{\rm{secA}} - {\rm{cosecA}}} \right)\left( {{\rm{si}}{{\rm{n}}^3}{\rm{A}} + {\rm{co}}{{\rm{s}}^3}{\rm{A}}} \right)}}\)
⇒ \( \frac{{\left( {{\rm{1}} - {\rm{sinAcosA}}} \right)\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {{\rm{sinA}} - {\rm{cosA}}} \right)}}{{{\rm{cosA}}\left[ {\frac{1}{{{\rm{cosA}}}} - \frac{1}{{{\rm{sinA}}}}} \right]\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {{\rm{si}}{{\rm{n}}^2}{\rm{A}} + {\rm{co}}{{\rm{s}}^2}{\rm{A}} - {\rm{sinAcosA}}} \right)}}\)
⇒ \( \frac{{\left( {1 - {\rm{sinAcosA}}} \right)\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {{\rm{sinA}} - {\rm{cosA}}} \right)}}{{{\rm{cosA}}\left[ {\frac{{{\rm{sinA}} - {\rm{cosA}}}}{{{\rm{sinA}}.{\rm{cosA}}}}} \right]\left( {{\rm{sinA}} + {\rm{cosA}}} \right)\left( {1 - {\rm{sinAcosA}}} \right)}}\)
⇒ \(\frac{sinA - cosA}{cosA[\frac{sinA - cosA}{sinA.cosA}]}\)
⇒ \(\frac{(sinA - cosA)\times sinA.cosA}{cosA[sinA - cosA]}\)
⇒ \(\frac{ sinA.cosA}{cosA}\)
⇒ sin A
∴ The correct answer is option (1).
Find the value of cos 4x
Answer (Detailed Solution Below)
Trigonometric Functions Question 7 Detailed Solution
Download Solution PDFConcept:
cos 2x = cos2 x – sin2 x = 2 cos2 x - 1 = 1 – 2 sin2 x
Calculation:
cos 4x
= cos 2(2x)
= 2 cos2 2x – 1 (∵cos 2x = 2 cos2 x – 1)
= 2 (1 – 2 sin2 x)2 – 1 (∵ cos 2x = 1 – 2 sin2 x)
= 2 [1 – 4 sin2 x + 4 sin4 x] – 1 [∵ (a – b)2 = a2 – 2ab + b2]
= 2 - 8 sin2 x + 8 sin4 x – 1
= 1 - 8 sin2 x + 8 sin4 x
Find the general solution of the equation 4 sin 3x = 2?
Answer (Detailed Solution Below)
Trigonometric Functions Question 8 Detailed Solution
Download Solution PDFConcept:
If sin θ = sin α then θ = nπ + (- 1)n α, α ∈ [-π/2, π/2], n ∈ Z.
T-Ratios |
0° |
30° |
45° |
60° |
90° |
Sin |
0 |
1/2 |
1/√2 |
√3/2 |
1 |
Cos |
1 |
√3/2 |
1/√2 |
1/2 |
0 |
Tan |
0 |
1/√3 |
1 |
√3 |
Not defined |
Calculation:
Given: 4 sin 3x = 2
⇒ sin 3x = ½
As we know that, sin (π/6) = ½
⇒ sin 3x = sin (π/6)
As we know that, if sin θ = sin α then
θ = nπ + (- 1)n α, α ∈ [-π/2, π/2], n ∈ Z.
⇒ 3x = nπ + (- 1)n × (π/6), where n ∈ Z.
⇒ x = n × (π/3) + (- 1)n × (π/18), where n ∈ Z.Find general solution of cos x = 1
Answer (Detailed Solution Below)
Trigonometric Functions Question 9 Detailed Solution
Download Solution PDFConcept:
General solution of some standard trigonometric equations:
Equations |
Solutions |
Conditions |
sin θ = sin α |
θ = nπ + (-1)n α |
α ∈ [-π/2, π/2] and n ∈ z |
cos θ = cos α |
θ = 2nπ ± α |
α ∈ [0, π] and n ∈ z |
tan θ = tan α |
θ = nπ + α |
α ∈ (-π/2, π/2) and n ∈ z |
Calculation:
Given: cos x = 1
⇒ cos x = cos 0
As we know, If cos θ = cos α then θ = 2nπ ± α
Therefore, x = 2nπ ± 0 = 2nπ
Hence, the general solution of cos x = 1 is x = 2nπ, n ∈ Z.
If 4sin2x - 2 cos2x = 2,then find the value of tan x?
Answer (Detailed Solution Below)
Trigonometric Functions Question 10 Detailed Solution
Download Solution PDFConcept:
sin2x + cos2x = 1
Calculations:
Given, 4sin2x - 2 cos2x = 2
⇒2sin2x - cos2x = 1
⇒ 2sin2x - cos2x = sin2x + cos2x
⇒ sin2x = 2 cos2x
⇒tan2 x = 2
⇒ tan x = √2
What is cot 2x cot 4x - cot 4x cot 6x - cot 6x cot 2x equal to
Answer (Detailed Solution Below)
Trigonometric Functions Question 11 Detailed Solution
Download Solution PDFConcept:
\(\rm cot (A + B) = \dfrac{cot A cot B - 1}{cot A + cot B}\)
Calculation:
Given,
(cot 2x ∙ cot 4x) - (cot 4x ∙ cot 6x) - (cot 6x ∙ cot 2x)
⇒ (cot 2x ∙ cot 4x) - cot 6x [cot 4x + cot 2x]
⇒ (cot 2x ∙ cot 4x) - cot (2x + 4x) [cot 4x + cot 2x]
⇒ (cot 2x ∙ cot 4x) - \((\rm \dfrac{cot 2x .cot 4x - 1}{cot 2x + cot 4x})\)× [cot 4x + cot 2x]
⇒ (cot 2x ∙ cot 4x) - (cot 2x ∙ cot 4 x - 1)
⇒ (cot 2x ∙ cot 4x) - (cot 2x ∙ cot 4x) + 1
⇒ 1
If 7 sinθ + 24 cosθ = 25, then what is the value of (sin θ + cos θ)?
Answer (Detailed Solution Below)
Trigonometric Functions Question 12 Detailed Solution
Download Solution PDFConcept:
\(\rm \sin \theta = \frac{Perpendicular}{Hypotenuse}\)
\(\rm \cos \theta = \frac{Base}{Hypotenuse} \)
sin2 θ + cos2 θ = 1
Calculation:
7 sinθ + 24 cosθ = 25
Dividing by 25 on both the sides, we get
\(\rm \frac{7}{25}\)sinθ + \(\rm \frac{24}{25}\)cosθ = 1 ....(i)
We know that,
sin2 θ + cos2 θ = 1
sin θ.sin θ + cos θ.cos θ = 1 ....(ii)
On comparing equ (i) and (ii)
sin θ = \(\rm \frac{7}{25}\)
cos θ = \(\rm \frac{24}{25}\)
Now, (sinθ + cosθ)
= \(\rm \frac{7}{25}\)+ \(\rm \frac{24}{25}\)
= \(\rm \frac{31}{25}\)
A and B are positive acute angles such that cos 2B = 3 sin2 A and 3 sin 2A = 2 sin 2B. What is the value of (A + 2B)?
Answer (Detailed Solution Below)
Trigonometric Functions Question 13 Detailed Solution
Download Solution PDFConcept:
cos (A + B) = cosA. cosB - sinA. sin B
Calculation:
Given: cos 2B = 3 sin2 A .... (1)
and 3sin 2A = 2 sin 2B .... (2)
Divide (1) by (2),
\(\frac{cos(2B)}{2sin(2B)}=\frac{3sin^2(A)}{3sin(2A)}\) .... (3)
We know that,
sin 2A = 2 sin A∙ cos A
Hence, equation (3) becomes,
\(\frac{cos(2B)}{2sin(2B)}=\frac{sin^2(A)}{2sin(A)cos(A)}\)
⇒ \(\frac{cos(2B)}{sin(2B)}=\frac{sin(A)}{cos(A)}\)
⇒ cos (2B) cos (A) = sin (2B) sin (A)
⇒ cos (2B) cos (A) - sin (2B) sin (A) = 0
From above concept,
cos (A + 2B) = 0
⇒ (A + 2B) = cos-1 (0)
⇒ (A + 2B) = π/2
Find the general solution of the equation 8 tan(2x) – 5 = 3?
Answer (Detailed Solution Below)
Trigonometric Functions Question 14 Detailed Solution
Download Solution PDFConcept:
If tan θ = tan α then θ = nπ + α, α ∈ (-π/2, π/2), n ∈ Z.
T-Ratios |
0° |
30° |
45° |
60° |
90° |
Sin |
0 |
1/2 |
1/√2 |
√3/2 |
1 |
Cos |
1 |
√3/2 |
1/√2 |
½ |
0 |
Tan |
0 |
1/√3 |
1 |
√3 |
Not defined |
Calculation:
Given: 8 tan(2x) – 5 = 3
⇒ 8 tan(2x) = 8
⇒ tan 2x = 1
As we know that, tan (π/4) = 1
⇒ tan 2x = tan (π/4)
As we know that, if tan θ = tan α then θ = nπ + α, α ∈ (-π/2, π/2), n ∈ Z.
⇒ 2x = nπ + (π/4), where n ∈ Z.
⇒ x = n (π/2) + (π/8), where n ∈ Z.What is the value of 2 sin 75° cos 75° ?
Answer (Detailed Solution Below)
Trigonometric Functions Question 15 Detailed Solution
Download Solution PDFConcept:
2sinx cos x = sin 2x
sin (90° + x) = cos x
Calculation:
Given, 2 sin 75° cos 75°
= sin [2 (75°)]
= sin (150°)
= sin (90° + 60°)
= cos 60°
= \(\rm \dfrac 1 2\)
Hence, the value of 2 sin 75° cos 75° is \(\rm \dfrac 1 2\)