The value of non-zero scalars α and β for all vectors \(\vec a\) and \(\vec b\), such that \(\rm \alpha\left(2\vec a-\vec b \right)+\beta\left(\vec a + 2\vec b\right)=8\vec b - \vec a \) is:

This question was previously asked in
NIMCET 2019 Official Paper
View all NIMCET Papers >
  1. α = 2, β = 1
  2. α = -2, β = -3
  3. α = 1, β = 3
  4. α = -2, β = 3

Answer (Detailed Solution Below)

Option 4 : α = -2, β = 3
Free
NIMCET 2020 Official Paper
10.7 K Users
120 Questions 480 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

If two vectors \(\rm \vec a = {a_1}\hat i + {a_2}\hat j+{a_3}\hat k\) and \(\rm \vec b = {b_1}\hat i + {b_2}\hat j+{b_3}\hat k\) are equal, then a1 = b1, a2 = b2 and c1 = c2.

Calculation:

It is given that \(\rm \alpha\left(2\vec a-\vec b \right)+\beta\left(\vec a + 2\vec b\right)=8\vec b - \vec a\).

⇒ \(\rm (2\alpha+\beta)\vec a+(-\alpha+2\beta)\vec b=8\vec b - \vec a\)

Comparing the scalar coefficients on both sides, we get:

2α + β = -1             ... (1)

-α + 2β = 8             ... (2)

Adding twice the equation (2) with the equation (1), we get:

5β = 15

⇒ β = 3

And using either equation (1) or (2), we get:

α = -2

Hence, α = -2, β = 3.

Latest NIMCET Updates

Last updated on Jun 12, 2025

->The NIMCET 2025 provisional answer key is out now. Candidates can log in to the official website to check their responses and submit objections, if any till June 13, 2025.

-> NIMCET exam was conducted on June 8, 2025.

-> NIMCET 2025 admit card was out on June 3, 2025.

-> NIMCET 2025 results will be declared on June 27, 2025. Candidates are advised to keep their login details ready to check their scrores as soon as the result is out.

-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti joy teen patti download mpl teen patti teen patti master game dhani teen patti