Question
Download Solution PDFIf ω is the cube root of unity, then what is the value of
\(\rm\begin{vmatrix} 1 & \omega &\omega^2 \\ \omega & \omega^2 &1 \\ \omega^2& 1 & \omega \end{vmatrix}\)
- 1
- \(\rm \omega + \omega^2\)
- 0
- \(\rm 1 \over1+ \omega + \omega^2\)
- -1
Answer (Detailed Solution Below)
Option 3 : 0
India's Super Teachers for all govt. exams Under One Roof
FREE
Demo Classes Available*
Enroll For Free Now
Detailed Solution
Download Solution PDFConcept:
If the 1, ω and ω2 are the cube roots of unity, then 1 + ω + ω2 = 0
If any row and column have all the elements as zero in the square matrix, then the determinant is zero.
Calculation:
D = \(\rm\begin{vmatrix} 1 & ω &ω^2 \\ ω & ω^2 &1 \\ ω^2& 1 & ω \end{vmatrix}\)
R3 = R3 + R1 + R2
D = \(\rm\begin{vmatrix} 1 & ω &1+ω+ω^2 \\ ω & ω^2 &1+ω+ω^2 \\ ω^2& 1 & 1+ω+ω^2 \end{vmatrix}\)
D = \(\rm\begin{vmatrix} 1 & ω &0 \\ ω & ω^2 &0 \\ ω^2& 1 & 0 \end{vmatrix}\) = 0
India’s #1 Learning Platform
Start Complete Exam Preparation
Daily Live MasterClasses
Practice Question Bank
Mock Tests & Quizzes
Trusted by 7.2 Crore+ Students