If  ω is the cube root of unity, then what is the value of

\(\rm\begin{vmatrix} 1 & \omega &\omega^2 \\ \omega & \omega^2 &1 \\ \omega^2& 1 & \omega \end{vmatrix}\)

  1. 1
  2. \(\rm \omega + \omega^2\)
  3. 0
  4. \(\rm 1 \over1+ \omega + \omega^2\)
  5. -1

Answer (Detailed Solution Below)

Option 3 : 0

Detailed Solution

Download Solution PDF

Concept:

If the 1, ω and ω are the cube roots of unity, then 1 + ω + ω2 = 0

If any row and column have all the elements as zero in the square matrix, then the determinant is zero.

Calculation:

D = \(\rm\begin{vmatrix} 1 & ω &ω^2 \\ ω & ω^2 &1 \\ ω^2& 1 & ω \end{vmatrix}\)

R3 = R3 + R1 + R2

D = \(\rm\begin{vmatrix} 1 & ω &1+ω+ω^2 \\ ω & ω^2 &1+ω+ω^2 \\ ω^2& 1 & 1+ω+ω^2 \end{vmatrix}\)

D = \(\rm\begin{vmatrix} 1 & ω &0 \\ ω & ω^2 &0 \\ ω^2& 1 & 0 \end{vmatrix}\) = 0

More Evaluation of Determinants Questions

More Determinants Questions

Get Free Access Now
Hot Links: teen patti master gold teen patti vungo teen patti casino apk teen patti 51 bonus