Complex Number elements MCQ Quiz - Objective Question with Answer for Complex Number elements - Download Free PDF
Last updated on Jun 19, 2025
Latest Complex Number elements MCQ Objective Questions
Complex Number elements Question 1:
If ω is a non-real cube root of unity, then what is a root of the following equation?\( \begin{vmatrix} x+1 & \omega & \omega^2 \\ \omega & x+\omega^2 & 1 \\ \omega^2 & 1 & x+\omega \end{vmatrix} = 0 \)
Answer (Detailed Solution Below)
Complex Number elements Question 1 Detailed Solution
Calculation:
Given,
Let ω be a non-real cube root of unity, so \( \omega^{3}=1 \) and \( 1+\omega+\omega^{2}=0 \).
Consider the determinant
\( \Delta(x)= \begin{vmatrix} x+1 & \omega & \omega^{2}\\ \omega & x+\omega^{2} & 1\\ \omega^{2} & 1 & x+\omega \end{vmatrix}=0. \)
Step 1 — Column operation: Replace the first column by \(C_{1}-C_{2}\):
\( \Delta(x)= \begin{vmatrix} x^{2}-1 & \,2\!k\!+\!1\, & 1\\ k-1 & k+2 & 1\\ 0 & 3 & 1 \end{vmatrix}. \)
Step 2 — Expansion along the third row:
\( \Delta(x)= -3\! \begin{vmatrix} k^{2}-1 & 1\\ k-1 & 1 \end{vmatrix} + \begin{vmatrix} k^{2}-1 & 2k+1\\ k-1 & k+2 \end{vmatrix}, \)
which simplifies to
\( \Delta(x)=x(x^{2}-1)-x\bigl(\omega+\omega^{2}\bigr) =x(x^{2}-1)+x =x^{3}. \)
Step 3 — Equate to zero:
\( \Delta(x)=0 \;\Longrightarrow\; x^{3}=0 \;\Longrightarrow\; x=0. \)
∴ The root of the equation is \( x = 0 \).
Hence, the correct answer is Option 1.
Complex Number elements Question 2:
If \( \begin{vmatrix} 2 & 3+i & -1 \\ 3-i & 0 & i \\ -1 & -i & 1 \end{vmatrix} = A + iB \)
where i= \(\sqrt{-1}\) , then what is A+B equal to?
Answer (Detailed Solution Below)
Complex Number elements Question 2 Detailed Solution
Calculation:
Determinant Δ = \(a(ei−fh)−b(di−fg)+c(dh−eg)\)
Now, For our matrix,
\(a=2,b=3+i,c=−1,d=3−i,e=0,f=i,g=−1,h=−i,i=1\)
calculate the subdeterminants
⇒ \( ei−fh=(0)(1)−(i)(−i)=0−(−1)=1\)
⇒ \(di−fg=(3−i)(1)−(i)(−1)=3−i+i=3\)
⇒ \(dh−eg=(3−i)(−i)−(0)(−1)=−3i+i 2=−3i−1=−1−3i\)
⇒ Δ = \(2(1)−(3+i)(3)+(−1)(−1−3i)\)
⇒ Δ = \(2−9−3i+1+3i\)
⇒ \(Δ=−6+0i\)
Since we are given that comparing the real and imaginary parts, we find:
A = -6 and B = 0
Thus A + B = -6 + 0 = - 6
Hence, the Correct answer is Option 2.
Complex Number elements Question 3:
If ω is the cube root of unity, then \(\begin{vmatrix} 1&\omega&\omega^2 \\\ \omega&\omega^2&1 \\\ \omega^2&1&\omega \end{vmatrix}=\ ?\)
Answer (Detailed Solution Below)
Complex Number elements Question 3 Detailed Solution
Concept:
Since ω is the cube root of unity,
Thus, ω3 = 1 and ω4 = ω.
Explanation:
We are given \(\begin{vmatrix} 1&\omega&\omega^2 \\\ \omega&\omega^2&1 \\\ \omega^2&1&\omega \end{vmatrix}\) i.e. (Taking determinant about first row), We get,
\(\begin{vmatrix} 1&\omega&\omega^2 \\\ \omega&\omega^2&1 \\\ \omega^2&1&\omega \end{vmatrix}\)
⇒ 1(ω3 - 1) - ω(ω2 - ω2) + ω2(ω - ω4) ....(ω3 = 1 and ω4 = ω.)
⇒ 1(1 - 1) - (0) + ω2(ω - ω)
⇒ 0
Complex Number elements Question 4:
Comprehension:
Consider the following statements
I. A(θ) is invertible for all θ ∈ R
II. A(θ)-1 = A(-θ)
Which of the above statement(s) is/are correct?
Answer (Detailed Solution Below)
Complex Number elements Question 4 Detailed Solution
Calculation:
We are given the following matrix:
\( A(θ) = \begin{bmatrix} \sin θ & i \cos θ \\ i \cos θ & \sin θ \end{bmatrix} \)
The determinant of \(A(θ) \) is calculated as follows:
\( \text{det}(A(θ)) = \sin^2 θ - (i \cos θ)(i \cos θ) = \sin^2 θ + \cos^2 θ = 1 \)
Since the determinant is 1 (non-zero), matrix Aθ is invertible for all θ in \(\mathbb{R} \)
Therefore, Statement I is correct.
We first compute the inverse of A(θ)-1 using the formula for the inverse of a 2x2 matrix:
\( A(θ)^{-1} = \frac{1}{\text{det}(A(θ))} \begin{bmatrix} \sin θ & -i \cos θ \\ -i \cos θ & \sin θ \end{bmatrix} \)
Since the determinant is 1, we have:
\( A(θ)^{-1} = \begin{bmatrix} \sin θ & -i \cos θ \\ -i \cos θ & \sin θ \end{bmatrix} \)
Now, let’s compute A(-θ) :
\( A(-θ) = \begin{bmatrix} \sin(-θ) & i \cos(-θ) \\ i \cos(-θ) & \sin(-θ) \end{bmatrix} \)
Using the trigonometric identities\(\sin(-θ) = -\sin(θ) \) and \(\cos(-θ) = \cos(θ) \) we get:
\( A(-θ) = \begin{bmatrix} -\sin θ & i \cos θ \\ i \cos θ & -\sin θ \end{bmatrix} \)
This is not equal to\(A(θ)^{-1} \), because the signs are different.
Therefore, Statement II is not correct.
Hence, the correct answer is: Option (1)
Complex Number elements Question 5:
Comprehension:
If \(\rm B(\theta)=A\left(\frac{\pi}{2}-\theta\right)\), then AB euqals
Answer (Detailed Solution Below)
Complex Number elements Question 5 Detailed Solution
Calculation:
We are given two matrices:
\( A(\theta) = \begin{bmatrix} \sin \theta & i \cos \theta \\ i \cos \theta & \sin \theta \end{bmatrix} \)
\( B(\theta) = A\left( \frac{\pi}{2} - \theta \right) = \begin{bmatrix} \sin\left( \frac{\pi}{2} - \theta \right) & i \cos\left( \frac{\pi}{2} - \theta \right) \\ i \cos\left( \frac{\pi}{2} - \theta \right) & \sin\left( \frac{\pi}{2} - \theta \right) \end{bmatrix} \)
Using the trigonometric identities:
\( \sin\left( \frac{\pi}{2} - \theta \right) = \cos(\theta) \)
\( \cos\left( \frac{\pi}{2} - \theta \right) = \sin(\theta) \)
The matrix \(B(\theta) \) becomes:
\( B(\theta) = \begin{bmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{bmatrix} \)
Now, compute the matrix product AB :
\( AB = \begin{bmatrix} \sin \theta & i \cos \theta \\ i \cos \theta & \sin \theta \end{bmatrix} \begin{bmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{bmatrix} \)
Performing the matrix multiplication:
\( AB = \begin{bmatrix} \sin \theta \cos \theta + i \cos \theta i \sin \theta & \sin \theta i \sin \theta + i \cos \theta \cos \theta \\ i \cos \theta \cos \theta + \sin \theta i \sin \theta & i \cos \theta i \sin \theta + \sin \theta \cos \theta \end{bmatrix} \)
Simplifying the terms:
\( AB = \begin{bmatrix} i \cos^2 \theta + \sin^2 \theta & i \sin \theta \cos \theta + \sin \theta \cos \theta \\ i \sin \theta \cos \theta + \cos \theta \sin \theta & i \cos^2 \theta + \sin^2 \theta \end{bmatrix} \)
Now, simplify further:
\( AB = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \)
Hence, the correct answer is Option (1).
Top Complex Number elements MCQ Objective Questions
What is the value of the determinant \(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{i}}^2}}&{{{\rm{i}}^3}}\\ {{{\rm{i}}^4}}&{{{\rm{i}}^6}}&{{{\rm{i}}^8}}\\ {{{\rm{i}}^9}}&{{{\rm{i}}^{12}}}&{{{\rm{i}}^{15}}} \end{array}} \right|\) where \(\rm i = \sqrt {-1}\) ?
Answer (Detailed Solution Below)
Complex Number elements Question 6 Detailed Solution
Download Solution PDFConcept:
\(\rm i = \sqrt {-1}\)
i2 = -1 , i3 = - i, i4 = 1, i6 = - 1 , i8 = 1 , i9 = i, i 12 = 1, and i15 = - i
Calculations:
Given determinant is \(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{i}}^2}}&{{{\rm{i}}^3}}\\ {{{\rm{i}}^4}}&{{{\rm{i}}^6}}&{{{\rm{i}}^8}}\\ {{{\rm{i}}^9}}&{{{\rm{i}}^{12}}}&{{{\rm{i}}^{15}}} \end{array}} \right|\)
Since, we have,
\(\rm i = \sqrt {-1}\)
i2 = -1 , i3 = - i, i4 = 1, i6 = - 1 , i8 = 1 , i9 = i, i 12 = 1, and i15 = - i
=\(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{-1}}}}&{{{\rm{-i}}}}\\ {{{\rm{1}}}}&{{{\rm{-1}}}}&{{{\rm{1}}}}\\ {{{\rm{i}}}}&{{{\rm{1}}}}&{{{\rm{-i}}}} \end{array}} \right|\)
=i(i - 1) + 1(-i - i) - i (1 + i)
= i2 - i - 2i - i - i2
= - 4i
The value of \(\left| {\begin{array}{*{20}{c}} {2 + i}&{2 - i}\\ {1 + i}&{i - 1} \end{array}} \right|\)
Answer (Detailed Solution Below)
Complex Number elements Question 7 Detailed Solution
Download Solution PDFConcept:
If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right]\) then determinant of A is given by: |A| = (a11 × a22) – (a12 – a21).
Calculation:
Let, \({\rm{A}} = \left| {\begin{array}{*{20}{c}} {2 + i}&{2 - i}\\ {1 + i}&{i - 1} \end{array}} \right|\)
⇒ |A| = (2 + i) (i – 1) – (2 – i) (1 + i)
= 2i + i2 – 2 – i – (2 – i + 2i – i2)
= i – 1 – 2 – (2 + i + 1) (∵ i2 = -1)
= i – 3 – 2 – i – 1
= -6
∴ |A| is real number.
If \(\left| {\begin{array}{*{20}{c}} {\rm{x}}&{\rm{y}}&0\\ 0&{\rm{x}}&{\rm{y}}\\ {\rm{y}}&0&{\rm{x}} \end{array}} \right| = 0\), then which one of the following is correct?
Answer (Detailed Solution Below)
Complex Number elements Question 8 Detailed Solution
Download Solution PDFConcept:
If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_{11}}}&{{{\rm{a}}_{12}}}&{{{\rm{a}}_{13}}}\\ {{{\rm{a}}_{21}}}&{{{\rm{a}}_{22}}}&{{{\rm{a}}_{23}}}\\ {{{\rm{a}}_{31}}}&{{{\rm{a}}_{32}}}&{{{\rm{a}}_{33}}} \end{array}} \right]\) then determinant of A is given by:
|A| = a11 × {(a22 × a33) – (a23 × a32)} - a12 × {(a21 × a33) – (a23 × a31)} + a13 × {(a21 × a32) – (a22 × a31)}
Calculation:
Given:
\(\left| {\begin{array}{*{20}{c}} {\rm{x}}&{\rm{y}}&0\\ 0&{\rm{x}}&{\rm{y}}\\ {\rm{y}}&0&{\rm{x}} \end{array}} \right| = 0\)
Expanding along R1, we get
⇒ x (x2 – 0) – y (0 – y2) + 0 = 0
⇒ x3 + y3 = 0
\(\Rightarrow {\rm{\;}}{{\rm{y}}^3}{\rm{\;}}\left( {\frac{{{{\rm{x}}^3}}}{{{{\rm{y}}^3}}}{\rm{\;}} + {\rm{\;}}1} \right){\rm{\;}} = {\rm{\;}}0{\rm{\;}}\)
\(\therefore \left( {\frac{{{{\rm{x}}^3}}}{{{{\rm{y}}^3}}}{\rm{\;}} + {\rm{\;}}1} \right) = {\rm{\;}}0{\rm{\;and\;}}{{\rm{y}}^3} \ne 0\)
\(\Rightarrow \frac{{{{\rm{x}}^3}}}{{{{\rm{y}}^3}}}{\rm{\;}} = {\rm{}} - 1\)
\(\Rightarrow \frac{{\rm{x}}}{{\rm{y}}} = {\left( { - 1} \right)^{\frac{1}{3}}}\)
Hence x/y is one of the cube roots of -1
If ω is the cube root of unity, then what is the value of
\(\rm\begin{vmatrix} 1 & \omega &\omega^2 \\ \omega & \omega^2 &1 \\ \omega^2& 1 & \omega \end{vmatrix}\)
Answer (Detailed Solution Below)
Complex Number elements Question 9 Detailed Solution
Download Solution PDFConcept:
If the 1, ω and ω2 are the cube roots of unity, then 1 + ω + ω2 = 0
If any row and column have all the elements as zero in the square matrix, then the determinant is zero.
Calculation:
D = \(\rm\begin{vmatrix} 1 & ω &ω^2 \\ ω & ω^2 &1 \\ ω^2& 1 & ω \end{vmatrix}\)
R3 = R3 + R1 + R2
D = \(\rm\begin{vmatrix} 1 & ω &1+ω+ω^2 \\ ω & ω^2 &1+ω+ω^2 \\ ω^2& 1 & 1+ω+ω^2 \end{vmatrix}\)
D = \(\rm\begin{vmatrix} 1 & ω &0 \\ ω & ω^2 &0 \\ ω^2& 1 & 0 \end{vmatrix}\) = 0
If \(x+iy=\begin{vmatrix}6i & -3i & 1 \\\ 4 & 3i & -1 \\\ 20 & 3 & i \end{vmatrix}\) then what is x - iy equal to?
Answer (Detailed Solution Below)
Complex Number elements Question 10 Detailed Solution
Download Solution PDFConcept:
i2 = - 1
Calculations:
Given, \(x+iy=\begin{vmatrix}6i & -3i & 1 \\\ 4 & 3i & -1 \\\ 20 & 3 & i \end{vmatrix}\)
⇒ x + iy = 6i (3i2 + 3) + 3i (4i + 20) + 1(12 - 60i)
⇒ x + iy = 6i (3i2 + 3) + 12i2 + 60i + 12 - 60i
We know that i2 = - 1
⇒ x + iy = 6i [3(-1)+3] +12(-1) + 60i + 12 - 60i
⇒ x + iy = 0
⇒ x + iy = 0 + i 0
⇒ x = 0 and y = 0
Consider, x - iy
Put the value of x and y in above expression, we get
⇒ x - iy = 0 - i0
⇒ x - iy = 0
Hint
To find the value of x - iy, find the value of x and y.
To find the value of x and y, solve the given determinant and compare the real and imaginary part.
If ω is a cube root of unity, then find the value of the determinant \(\rm \begin{vmatrix} 1 + \omega & \omega^2 & -\omega \\\ 1 + \omega^2 & \omega & -\omega^2 \\\ \omega^2 + \omega & \omega & -\omega^2 \end{vmatrix}\) is
Answer (Detailed Solution Below)
Complex Number elements Question 11 Detailed Solution
Download Solution PDFConcept:
ω is a cube root of unity.
Property of cube root of unity:
- ω3 = 1
- 1 + ω + ω2 = 0
Calculations:
Given, ω is a cube root of unity.
⇒ω3 = 1, ad 1 + ω + ω2 = 0
Now, consider the determinant
\(\rm \begin{vmatrix} 1 + ω & ω^2 & -ω \\\ 1 + ω^2 & ω & -ω^2 \\\ ω^2 + ω & ω & -ω^2 \end{vmatrix}\)
Taking ω and -ω common from C2 and C3 respectively,
= \(\rm-ω^2 \begin{vmatrix} 1 + ω & ω & 1\\\ 1 + ω^2 &1 & ω \\\ ω^2 + ω & 1& ω \end{vmatrix}\)
= \(\rm -ω^2 [(1+ω)(ω-ω)-ω(ω +1-1-ω^2)+(1+ω^2-ω^2-ω)]\)
= \(\rm -ω^2 [-ω^2+1+1-ω]\)
= \(\rm ω -2ω^2+ 1\)
= \(\rm 1+ ω + ω^2-3ω^2\)
= 0 - 3ω2
= - 3ω2
Hence the required value is -3ω2
The smallest positive integer n for which
\(\rm \left(\frac{1-i}{1+i}\right)^{n^2}=1\)
where i = √-1, is
Answer (Detailed Solution Below)
Complex Number elements Question 12 Detailed Solution
Download Solution PDFConcept:
(i)2 = 1
(-i)4 = 1
Calculation:
\(\rm \left(\frac{1-i}{1+i}\right)^{n^2}=1\)
On rationalizing,
\(\rm \left (\frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i} \right )^{n^{2}}\)= 1
\(\rm \left (\frac{(1 - i)^{2}}{1 - i^{2}} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{1 + i^{2} - 2i}{1 - (-1)} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{1 - 1 - 2i}{1 + 1} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{- 2i}{2} \right )^{n^{2}}\)= 1
\(\rm \left (- i \right )^{n^{2}} \) = 1
if we put n = 2 then,
\(\rm \left (- i \right )^{n^{2}} \) = 1
Satisfy the equation.
Hence, Option 1 is correct.
If \(\left| {\begin{array}{*{20}{c}} x&-3i&1\\ y&1&{i}\\ 0&2i&-i \end{array}} \right|=6+11i\) , then what are the values of x and y respectively?
Answer (Detailed Solution Below)
Complex Number elements Question 13 Detailed Solution
Download Solution PDFCalculation:
Given: \(\left| {\begin{array}{*{20}{c}} x&-3i&1\\ y&1&{i}\\ 0&2i&-i \end{array}} \right|=6+11i\)
Let \(A=\left| {\begin{array}{*{20}{c}} x&-3i&1\\ y&1&{i}\\ 0&2i&-i \end{array}} \right|\)
⇒ det A = x[-i - 2i2] - (-3i)[-yi - 0] + 1[2yi - 0]
As we know that, i2 = -1
det A = x[-i + 2] + 3i[-yi] + [2yi]
det A = -ix + 2x + 3y + 2yi
det A = (2x + 3y) + (2y - x)i
According to the question,
det A = 6 + 11i
(2x + 3y) + (2y - x)i = 6 + 11i
⇒ 2x + 3y = 6 and 2y – x = 11
Solving the above equations we get
⇒ x = - 3, y = 4(cos 5θ - i sin 5θ)2 is same as
Answer (Detailed Solution Below)
Complex Number elements Question 14 Detailed Solution
Download Solution PDFConcept:
If r(cos θ + i sin θ) is a complex number then:
{r (cos θ + i sin θ)}n = rn (cos nθ + i sin nθ)
Calculation:
Given:
(cos 5θ – i sin 5θ)2 = z
Using identity
Z = {cos (10 θ) – i sin (10 θ)}
z = (cos θ + i sin θ)– 10
Additional Information
DERIVATION:
De Moivre’s theorem
Prove by induction z = r(cos θ + i sin θ)
⇒ zn = rn (cos nθ + i sin nθ)
Step 1:
Show true for n = 1; z1 = r1 (cos θ + i sin θ)
Step 2:
Assume true for n = k; zk = rk (cos kθ + i sin kθ)
Step 3:
Prove true for n = k + 1
zk + 1 = zk z1 = rk (cos kθ + i sin kθ) × r(cos θ + i sin θ)
= rk + 1 (cos (kθ + θ) + i sin (kθ + θ))
⇒ zk + 1 = rk + 1 (cos (k + 1)θ + i sin (k + 1)θ)
Step 4:
Conclusion
By induction, the statement is true ∀ n ≥ 1, n ϵ N
If ω is the cube root of unity, then what is the value of
\(\rm\begin{vmatrix} 1 & \omega &\omega^2 \\ \omega & \omega^2 &1 \\ \omega^2& 1 & \omega \end{vmatrix}\)
Answer (Detailed Solution Below)
Complex Number elements Question 15 Detailed Solution
Download Solution PDFConcept:
If the 1, ω and ω2 are the cube roots of unity, then 1 + ω + ω2 = 0
If any row and column have all the elements as zero in the square matrix, then the determinant is zero.
Calculation:
D = \(\rm\begin{vmatrix} 1 & ω &ω^2 \\ ω & ω^2 &1 \\ ω^2& 1 & ω \end{vmatrix}\)
R3 = R3 + R1 + R2
D = \(\rm\begin{vmatrix} 1 & ω &1+ω+ω^2 \\ ω & ω^2 &1+ω+ω^2 \\ ω^2& 1 & 1+ω+ω^2 \end{vmatrix}\)
D = \(\rm\begin{vmatrix} 1 & ω &0 \\ ω & ω^2 &0 \\ ω^2& 1 & 0 \end{vmatrix}\) = 0