बच्चों की उम्र के प्रायिकता घनत्व फलन को इस प्रकार परिभाषित किया गया है\(f(x)=\dfrac{3}{4}x(2-x);0<x<2\), X का 5वाँ दशमक बिंदु है:

This question was previously asked in
SSC CGL Tier-II ( JSO ) 2019 Official Paper ( Held On : 17 Nov 2020 )
View all SSC CGL Papers >
  1. 1
  2. \(\dfrac{3}{2}\)
  3. \(\dfrac{5}{4}\)
  4. \(\dfrac{3}{4}\)

Answer (Detailed Solution Below)

Option 1 : 1
vigyan-express
Free
PYST 1: SSC CGL - General Awareness (Held On : 20 April 2022 Shift 2)
3.6 Lakh Users
25 Questions 50 Marks 10 Mins

Detailed Solution

Download Solution PDF

व्याख्या

5वें दशमक के लिए = \(% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX! % MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGOmaaqdpaqaa8qa % cqGHRiI8aaacbmGccaWFMbWaaeWaa8aabaWdbiaa-HhaaiaawIcaca % GLPaaacaWFKbGaa8hEaiabg2da9iaaiwdacaGGVaGaaGymaiaaicda % aaa!43C1! \mathop \smallint \limits_0^2 f\left( x \right)dx = 5/10% MathType!End!2!1! \)

गणना

\(% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX! % MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaeiraiaaiwdaa0Wd % aeaapeGaey4kIipaaOGaaG4maiaac+cacaaI0aGaamiEamaabmaapa % qaa8qacaWG4bGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiaadsgacaWG % 4baaaa!448B! \mathop \smallint \limits_0^{{\text{D}}5} 3/4x\left( {x - 2} \right)dx\) = = ¾(2x2/2 – x3/3)0d5

⇒ 5/10 = ¾(2D52/2 – D53/3)

समीकरण में, Dका मान रखने पर, समीकरण को संतुष्ट करने वाला मान इस प्रश्न का उत्तर हो जाएगा

विकल्प 1 – (1)

⇒ ¾(2 × (1)2/2(1)3/3)

⇒ ¾(1 – 1/3

⇒ ¾(2/3) = ½ या 5/10

∴ विकल्प 1 समीकरण को संतुष्ट करता है इसलिए X का 5वाँ दशमक बिंदु 1 है।                                                                                  

Latest SSC CGL Updates

Last updated on Jun 13, 2025

-> The SSC CGL Notification 2025 has been released on 9th June 2025 on the official website at ssc.gov.in.

-> The SSC CGL exam registration process is now open and will continue till 4th July 2025, so candidates must fill out the SSC CGL Application Form 2025 before the deadline.

-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.

->  The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.

->  Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.

-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.

-> The CGL Eligibility is a bachelor’s degree in any discipline.

-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.

-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.

-> Candidates should also use the SSC CGL previous year papers for a good revision. 

More Random Variables Basics Questions

More Probability and Statistics Questions

Get Free Access Now
Hot Links: teen patti gold download apk teen patti bodhi teen patti game paisa wala