Question
Download Solution PDFएक त्रिभुजाकार पिरामिड का आधार एक समद्विबाहु त्रिभुज है जिनके भुजा की लंबाई 5 सेमी, 5 सेमी और 6 सेमी है। यदि पिरामिड की ऊंचाई 10 सेमी है तो पिरामिड का आयतन ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया हुआ:
एक त्रिभुजाकार पिरामिड का आधार एक समद्विबाहु त्रिभुज है जिनके भुजा की लंबाई 5 सेमी, 5 सेमी और 6 सेमी है।
पिरामिड की ऊंचाई 10 सेमी है
गणना:
माना कि समान भुजा a है और असमान भुजा b है।
तो , समद्विबाहु त्रिभुज का क्षेत्रफल \(= \frac{b}{4}\sqrt {4{a^2} - {b^2}} \)
तो , समद्विबाहु त्रिभुज का क्षेत्रफल \(= \frac{6}{4}\sqrt {4 \times {5^2} - {6^2}}\)
⇒ 12 सेमी2
तो पिरामिड का आयतन = 1/3 × 12 × 10
∴ 40 सेमी3Last updated on Jul 7, 2025
-> The SSC CGL Notification 2025 for the Combined Graduate Level Examination has been officially released on the SSC's new portal – www.ssc.gov.in.
-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.
-> The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.
-> Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.
-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.
-> The CGL Eligibility is a bachelor’s degree in any discipline.
-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.
-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.
-> Candidates should also use the SSC CGL previous year papers for a good revision.