Question
Download Solution PDFएक लंब पिरामिड का आधार 8 सेमी भुजा वाला एक समबाहु त्रिभुज है, और इसकी ऊँचाई 30 \(\sqrt{3}\) सेमी है। आयतन (सेमी3 में) ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
समबाहु त्रिभुज की भुजा = 8 सेमी
ऊंचाई = 30 \(√{3}\) सेमी
उपयोग किया गया सूत्र:
पिरामिड का आयतन (V) = (1/3) × आधार का क्षेत्रफल × ऊंचाई
समबाहु त्रिभुज का क्षेत्रफल = (√3/4) × a2 (जहां a समबाहु त्रिभुज की भुजा है)
गणना:
⇒ त्रिभुज का क्षेत्रफल = (√3/4) × 8 × 8
⇒ समबाहु त्रिभुज का क्षेत्रफल = 16√3 सेमी2
⇒ पिरामिड का आयतन = (1/3) × 16√3 × 30√3
⇒ V = 480 सेमी3
∴ पिरामिड का आयतन 480 सेमी3 है।
Last updated on Jul 9, 2025
-> The SSC CGL Notification 2025 for the Combined Graduate Level Examination has been officially released on the SSC's new portal – www.ssc.gov.in.
-> Bihar Police Admit Card 2025 Out at csbc.bihar.gov.in
-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.
-> The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.
-> Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.
-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.
-> The CGL Eligibility is a bachelor’s degree in any discipline.
-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.
-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.
-> The AP DSC Answer Key 2025 has been released on its official website.
-> The UP ECCE Educator 2025 Notification has been released for 8800 Posts.