Question
Download Solution PDFयदि ω एकत्व का एक घन मूल है तो सारणिक \(\rm \begin{vmatrix} 1 + \omega & \omega^2 & -\omega \\\ 1 + \omega^2 & \omega & -\omega^2 \\\ \omega^2 + \omega & \omega & -\omega^2 \end{vmatrix}\) का मान क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
ω एकत्व का घन मूल है।
एकत्व के घनमूल का गुण:
- ω3 = 1
- 1 + ω + ω2 = 0
गणना:
दिया, ω एकत्व का घन मूल है।
⇒ω3 = 1, ad 1 + ω + ω2 = 0
अब, सारणिक
\(\rm \begin{vmatrix} 1 + ω & ω^2 & -ω \\\ 1 + ω^2 & ω & -ω^2 \\\ ω^2 + ω & ω & -ω^2 \end{vmatrix}\)
ω और -ω को क्रमशः C2 और C3 से उभयनिष्ठ लेकर
= \(\rm-ω^2 \begin{vmatrix} 1 + ω & ω & 1\\\ 1 + ω^2 &1 & ω \\\ ω^2 + ω & 1& ω \end{vmatrix}\)
= \(\rm -ω^2 [(1+ω)(ω-ω)-ω(ω +1-1-ω^2)+(1+ω^2-ω^2-ω)]\)
= \(\rm -ω^2 [-ω^2+1+1-ω]\)
= \(\rm ω -2ω^2+ 1\)
= \(\rm 1+ ω + ω^2-3ω^2\)
= 0 - 3ω 2
= -3ω2
इसलिए, सारणिक का मान -3ω2 है
Last updated on Jun 12, 2025
->The NIMCET 2025 provisional answer key is out now. Candidates can log in to the official website to check their responses and submit objections, if any till June 13, 2025.
-> NIMCET exam was conducted on June 8, 2025.
-> NIMCET 2025 admit card was out on June 3, 2025.
-> NIMCET 2025 results will be declared on June 27, 2025. Candidates are advised to keep their login details ready to check their scrores as soon as the result is out.
-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.