b का मान ज्ञात करें यदि \(\rm \int \frac{dx}{\sqrt {9-x^{2}}}=sin^{-1}\frac{x}{b}+C\)

  1. 2
  2. 3
  3. 4
  4. 5

Answer (Detailed Solution Below)

Option 2 : 3
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

अवधारणा:

\(\rm \int \frac{dx}{\sqrt {a^{2}-x^{2}}}=sin^{-1}\frac{x}{a}+C\)

गणना:

दिया गया: \(\rm \int \frac{dx}{\sqrt {9-x^{2}}}=sin^{-1}\frac{x}{b}+C\)

इस सूत्र का उपयोग करते हुए,

\(\rm \int \frac{dx}{\sqrt {a^{2}-x^{2}}}=sin^{-1}\frac{x}{a}+C\)

\(\rm \Rightarrow \int \frac{dx}{\sqrt {9-x^{2}}}=\int \frac{dx}{\sqrt {3^{2}-x^{2}}}=sin^{-1}\frac{x}{3}+C\)     ----- (1)

∵ यह दिया जाता है कि, \(\rm \int \frac{dx}{\sqrt {9-x^{2}}}=sin^{-1}\frac{x}{b}+C\) -   ---- (2)

(1) और (2) की तुलना करने पर हमें मिलता है, b = 3।

इसलिए, सही उत्तर विकल्प 2 है

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: online teen patti real money teen patti master 2024 teen patti master gold download teen patti comfun card online