Question
Download Solution PDFb का मान ज्ञात करें यदि \(\rm \int \frac{dx}{\sqrt {9-x^{2}}}=sin^{-1}\frac{x}{b}+C\)
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा:
\(\rm \int \frac{dx}{\sqrt {a^{2}-x^{2}}}=sin^{-1}\frac{x}{a}+C\)
गणना:
दिया गया: \(\rm \int \frac{dx}{\sqrt {9-x^{2}}}=sin^{-1}\frac{x}{b}+C\)
इस सूत्र का उपयोग करते हुए,
\(\rm \int \frac{dx}{\sqrt {a^{2}-x^{2}}}=sin^{-1}\frac{x}{a}+C\)
\(\rm \Rightarrow \int \frac{dx}{\sqrt {9-x^{2}}}=\int \frac{dx}{\sqrt {3^{2}-x^{2}}}=sin^{-1}\frac{x}{3}+C\) ----- (1)
∵ यह दिया जाता है कि, \(\rm \int \frac{dx}{\sqrt {9-x^{2}}}=sin^{-1}\frac{x}{b}+C\) - ---- (2)
(1) और (2) की तुलना करने पर हमें मिलता है, b = 3।
इसलिए, सही उत्तर विकल्प 2 है ।
Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.