Curl MCQ Quiz in मराठी - Objective Question with Answer for Curl - मोफत PDF डाउनलोड करा

Last updated on Apr 16, 2025

पाईये Curl उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Curl एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Curl MCQ Objective Questions

Top Curl MCQ Objective Questions

Curl Question 1:

If ϕ(x, y, z) is a scalar homogeneous function of degree 4, then \(\rm \nabla .(ϕ \vec{r})=\) will be _______, where \(\rm \vec{r}=x \vec{i}+y \vec{j}+z \vec{k}\)

  1. 4 ϕ
  2. 16 ϕ
  3. 7 ϕ
  4. 8 ϕ

Answer (Detailed Solution Below)

Option 3 : 7 ϕ

Curl Question 1 Detailed Solution

Concept:

\(\nabla.(ϕ (\vec{r}))=(\nabla ϕ).\vec{r}+ϕ(\nabla.\vec{r})\)

Explanation:

If ϕ(x,y,z) is scalar homogeneous function og degree 4 and \(\rm \vec{r}=x \vec{i}+y \vec{j}+z \vec{k}\)

Then, \(\rm \vec{r}=(x,y,z)\) & \(\nabla(\phi)=(\frac{\partial{\phi}}{\partial {x}},\frac{\partial{\phi}}{\partial {y}},\frac{\partial{\phi}}{\partial {z}})\)

Now, \(\rm \nabla .(ϕ \vec{r})=\nabla(\phi x \hat{\mathbf{i}}+\phi y \hat{\mathbf{j}}+\phi z \hat{\mathbf{k}})\)

Use, \(\nabla.(ϕ (\vec{r}))=(\nabla ϕ).\vec{r}+ϕ(\nabla.\vec{r})\)

Since, \(\nabla \vec{r}=3\)

\(\nabla.(ϕ (\vec{r}))=(\frac{\partial{\phi}}{\partial {x}},\frac{\partial{\phi}}{\partial {y}},\frac{\partial{\phi}}{\partial {z}}).(x,y,z)+\phi(\nabla . \vec{r})\)

\(\rm x \frac{\partial{\phi}}{\partial{x}}+y\frac{\partial{\phi}}{\partial{y}}+z\frac{\partial{\phi}}{\partial{z}}+3\phi\)

Given \(\rm \phi(x,y,z)\) is homogenous function of degree 4, \(\rm \phi(λ x,λ y,λ z)=λ^4 \phi(x,y,z)\)

\(\rm x \frac{\partial{\phi}}{\partial{x}}+y\frac{\partial{\phi}}{\partial{y}}+z\frac{\partial{\phi}}{\partial{z}}=4λ^3 \phi(x,y,z)\)

Now, let λ=1

\(\rm x \frac{\partial{\phi}}{\partial{x}}+y\frac{\partial{\phi}}{\partial{y}}+z\frac{\partial{\phi}}{\partial{z}}=4\phi\)

\(\rm \nabla .(ϕ \vec{r})=3\phi+4\phi=7\phi\)   

Curl Question 2:

If \(\vec F = \left( {2x + 3y + \lambda z} \right)\hat i + \left( {\beta x + 6y + z} \right)\hat j + \left( {7x - \omega y + 8z} \right)\hat k\)

Is irrotational, then find the value of the product of (λ β ω).

Answer (Detailed Solution Below) -21

Curl Question 2 Detailed Solution

\(\begin{array}{l} \nabla \times \vec F = 0\\ \left| {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {2x + 3y + \lambda z}&{\beta x + 6y + z}&{7x - \omega y + 8z} \end{array}} \right| = 0\\ i\left( { - \omega - 1 } \right) - j\left( {7 - \lambda } \right) + \hat k\left( {\beta - 3} \right) = 0\\ \Rightarrow \omega + 1 = 0\\\Rightarrow \omega = - 1\\ \beta = 3,\lambda =7\\ \lambda \beta \omega = 7 \times 3 \times -1 = - 21 \end{array}\)

Curl Question 3:

Calculate curl of \(\vec F\) for \(\vec F = {x^2}{y^2}\hat i - 2xyz\;\;\hat j + 2yz\;\hat k\) at (1, 1, 1).

  1. 4î  - 4k̂
  2. 4î + 2ĵ - 6k̂
  3. 6î - 4ĵ + 2k̂
  4. 6î + 4ĵ - 2k̂

Answer (Detailed Solution Below)

Option 1 : 4î  - 4k̂

Curl Question 3 Detailed Solution

Concept:

Curl \(\vec F = \vec \nabla \times \vec F\)

\(\vec \nabla \left( {\frac{\partial }{{\partial x}}\hat i + \frac{\partial }{{\partial y}}\hat j + \frac{\partial }{{\partial z}}\hat k} \right)\)

\(Curl\;\vec F = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{F_x}}&{{F_y}}&{{F_z}} \end{array}} \right|\)

Calculation:

= î (2z + 2xY) – ĵ (0 - 0) + k̂ (-2yz-2x2y)

At (1, 1, 1)

⇒  î (2 +2) + 0 ĵ + (-1 -2)k̂

= 4î - 4k̂

Curl Question 4:

Vector \(\frac{\vec{r}}{r^3}\) where \(|\vec{r}|={r}\) and \(\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}\)  will be

  1. only non-rotating
  2. solenoid only
  3. both (1) and (2)
  4. neither (1) nor (2)

Answer (Detailed Solution Below)

Option 3 : both (1) and (2)

Curl Question 4 Detailed Solution

Concept:

(i) \(\vec{F}\) Irrotational if \(\nabla \times \vec{F}=0\)

(ii) \(\vec{F}\) is solenoidal \(\nabla . \vec{F}=0\)

(iii) \(\nabla. \frac{\vec r}{r^3} = \frac{1}{r^3}\nabla.{\vec r}-\frac{3}{r^4}(r.\nabla r)\)

Explanation:

\(\nabla .F=\nabla. \frac{\vec r}{r^3} = \frac{1}{r^3}\nabla.{\vec r}-\frac{3}{r^4}(r.\nabla r)\)

=\(\frac{1}{r^3}(1+1+1)-\frac{3}{r^4}(x \frac{\partial r}{\partial x}+y \frac{\partial r}{\partial y}+z \frac{\partial r}{\partial z})\)

As, \(r = \sqrt{x^2+y^2+z^2}\)

\(\frac{\partial{r}}{\partial{x}}=\frac{x}{\sqrt{(x^2+y^2+z^2)}}=\frac{x}{r}\)

Similarly, \(\frac{\partial{r}}{\partial{y}}=\frac{y}{r}\) , \(\frac{\partial{r}}{\partial{z}}=\frac{z}{r}\)

=\(\frac{3}{r^4}-\frac{3}{r^4}(\frac{x^2}{r}+\frac{y^2}{r}+\frac{z^2}{r})\)

=\(\frac{3}{r^4}-\frac{3}{r^4}(\frac{r^2}{r})\)

=\(\frac{3}{r^4}-\frac{3}{r^3}=0\)

Now, \(\nabla \times \vec{F}\) = \(\nabla \times (\frac {\vec{r}}{r^3})\) = \(\nabla \times (\frac {x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}}{r^3})\) 

\(\nabla \times (\frac {\vec{r}}{r^3})\) = \(\begin{bmatrix} ​​​​\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{x}{r^3} & \frac{y}{r^3} & \frac{z}{r^3} \end{bmatrix} \)

\(\nabla \times \vec{F} = (\frac{\partial}{\partial {y}}(\frac{z}{r^3})-\frac{\partial}{\partial {z}}(\frac{y}{r^3}))\hat{\mathbf{i}}+(\frac{\partial}{\partial {z}}(\frac{x}{r^3})-\frac{\partial}{\partial {x}}(\frac{z}{r^3}))\hat{\mathbf{j}}+(\frac{\partial}{\partial {x}}(\frac{y}{r^3})-\frac{\partial}{\partial {y}}(\frac{x}{r^3}))\hat{\mathbf{k}}\)

Now, \(\frac{\partial}{\partial{y}}(\frac{z}{r^3})=\frac{\partial}{\partial{y}}(\frac{z}{(x^2+y^2+z^2)^{3/2}})\)

\(\frac{-3yz}{(x^2+y^2+z^2)^{3/2}}\)

Similarly, \(\frac{\partial}{\partial{y}}(\frac{y}{r^3})=\frac{\partial}{\partial{y}}(\frac{y}{(x^2+y^2+z^2)^{3/2}})\)=\(\frac{-3yz}{(x^2+y^2+z^2)^{3/2}}\)

⇒  \(\frac{\partial}{\partial {y}}(\frac{z}{r^3})-\frac{\partial}{\partial {z}}(\frac{y}{r^3})=0\)

Similarly, \(\frac{\partial}{\partial {z}}(\frac{x}{r^3})-\frac{\partial}{\partial {x}}(\frac{z}{r^3})=0\) & \(\frac{\partial}{\partial {x}}(\frac{y}{r^3})-\frac{\partial}{\partial {y}}(\frac{x}{r^3})=0\)

⇒ \(\nabla \times \vec{F}\) =0 

Curl Question 5:

If a continuously differentiable vector function is the gradient of a scalar function, then its curl is

  1. infinite
  2. indeterminate
  3. unity
  4. zero

Answer (Detailed Solution Below)

Option 4 : zero

Curl Question 5 Detailed Solution

Concept:

Let ϕ be a function of (x, y, z)

Then grad \(\left( ϕ \right)=\hat{i}\frac{\partial ϕ }{\partial x}+\hat{j}\frac{\partial ϕ }{\partial y}+\hat{k}\frac{\partial ϕ }{\partial z}\)

curl (grad (ϕ)) \(=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ \frac{\partial ϕ }{\partial x} & \frac{\partial ϕ }{\partial y} & \frac{\partial ϕ }{\partial z} \\ \end{matrix} \right|\)

curl (grad (ϕ)) \(=0\hat{i}+0\hat{j}+0\hat{k}\)

curl (grad (ϕ)) = 0

Curl Question 6:

If \(\vec F\left( t \right)\) vector has characteristics similar to a straight line, then which option is true

  1. \(\rm \vec F \times \frac{{d\vec F}}{{dt}} = 0\)

  2. \(\rm \vec F.\frac{{d\vec F}}{{dt}} = 0\)

  3. Both a and b

  4. None of these

Answer (Detailed Solution Below)

Option 1 :

\(\rm \vec F \times \frac{{d\vec F}}{{dt}} = 0\)

Curl Question 6 Detailed Solution

Explanation:

If \(\vec F\left( t \right)\) vector has characteristics similar to a straight line so,

\(\rm \vec F\left( t \right) \Rightarrow constant\ direction\)

so, \(\rm \vec F \times \frac{{d\vec F}}{{dt}} = 0\)

Curl Question 7:

curl(grad φ) =

  1. unit vector k̂
  2. Unit Vector Ĵ
  3. 0
  4. unit vector î

Answer (Detailed Solution Below)

Option 3 : 0

Curl Question 7 Detailed Solution

Explanations:

The curl of the gradient of any scalar function φ is always zero. curl(grad φ) = 0

Curl Question 8:

Determine the curl (grad ϕ), where ϕ = x3 + y3 + z3 – 3xyz______

Answer (Detailed Solution Below) 0

Curl Question 8 Detailed Solution

Explanation:

Curl grad ϕ = × ∇ϕ

According to property of Nable operator (∇)

∇ × ∇ϕ = 0

Where, ϕ is a scalar quantity

Thus, curl (grad ϕ) = 0

Curl Question 9:

If \(\vec r = x\hat i + y\hat j + z\hat k\) and \({\vec a}\) is a constant vector, then \(\nabla \times \left( {\vec a \times \vec r} \right)\) will be

  1. \(- 2\vec a\)
  2. \(2\vec a\)
  3. \(3\vec r\vec a\)
  4. \(- 3a\vec r\)

Answer (Detailed Solution Below)

Option 2 : \(2\vec a\)

Curl Question 9 Detailed Solution

Let, \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\)

\(\begin{array}{l} \vec a \times \vec r = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {{a_1}}&{{a_2}}&{{a_3}}\\ x&y&z \end{array}} \right|\\ \vec a \times \vec r = \hat i\left( {{a_2}z - {a_3}y} \right) - \hat j\left( {{a_1}z - {a_3}x} \right) + \hat k\left( {{a_1}y - {a_2}x} \right) \end{array}\)  

\(\nabla \times \left( {\vec a \times \vec r} \right) = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{a_2}z - {a_3}y}&{{a_3}x - {a_1}z}&{{a_1}y - {a_2}x} \end{array}} \right|\)

\(\Rightarrow \hat i\left[ {\frac{\partial }{{\partial y}}\left( {{a_1}y - {a_2}x} \right) - \frac{\partial }{{\partial z}}\left( {{a_3}x - {a_1}z} \right)} \right] - \hat j\left[ {\frac{\partial }{{\partial x}}\left( {{a_1}y - {a_2}x} \right) - \frac{\partial }{{\partial z}}\left( {{a_2}z - {a_3}y} \right)} \right] +\\\;\;\;\; \hat k\left[ {\frac{\partial }{{\partial x}}\left( {{a_3}x - {a_1}z} \right) - \frac{\partial }{{\partial y}}\left( {{a_2}z - {a_3}y} \right)} \right]\)

\(\begin{array}{l} \nabla \times \left( {\vec a \times \vec r} \right) = \hat i\left( {{a_1} + {a_1}} \right) - \hat j\left( { - {a_2} - {a_2}} \right) + \hat k\left( {{a_3} + {a_3}} \right)\\ = 2\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right) = 2\vec a \end{array}\)  

Curl Question 10:

A vector field with a vanishing curl is known as _______

  1. Cycloidal
  2. Irrotational
  3. Rotational
  4. Solenoidal

Answer (Detailed Solution Below)

Option 2 : Irrotational

Curl Question 10 Detailed Solution

A vector field with a vanishing curl is called an irrotational ​vector.

Explanation:

Irrotational Vector: ​A vector point function F is said to be a rotational vector if curl F = 0

curl F = ∇ × F = \(\left[ {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\delta }{{\delta x}}}&{\frac{\delta }{{\delta y}}}&{\frac{\delta }{{\delta z}}}\\ {{F_1}}&{{F_2}}&{{F_3}} \end{array}} \right]\)

Additional Information

If a vector point function F(x, y, z) = F1i  + F2j + F3k is defined and differentiable at each point in some region of space then the divergence of F is denoted by div F or ∇.F and define as,

div F = ∇.F = \(\frac{{\delta {F_1}}}{{\delta x}} + \frac{{\delta {F_2}}}{{\delta y}} + \frac{{\delta {F_3}}}{{\delta z}}\) 

Solenoidal Vector: A vector function F is said to be a solenoidal vector if ∇.F = 0.

Get Free Access Now
Hot Links: teen patti teen patti comfun card online online teen patti real money teen patti master official teen patti cash game