Applications of Derivatives MCQ Quiz in मल्याळम - Objective Question with Answer for Applications of Derivatives - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 8, 2025

നേടുക Applications of Derivatives ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Applications of Derivatives MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Applications of Derivatives MCQ Objective Questions

Top Applications of Derivatives MCQ Objective Questions

Applications of Derivatives Question 1:

It is given that at x = 2, the function x3 - 12x2 + kx - 8 attains its maximum value, on the interval [0, 3]. Find the value of k

  1. 23
  2. 34
  3. 36
  4. 35

Answer (Detailed Solution Below)

Option 3 : 36

Applications of Derivatives Question 1 Detailed Solution

Concept:

Following steps to finding maxima and minima using derivatives.

  • Find the derivative of the function.
  • Set the derivative equal to 0 and solve. This gives the values of the maximum and minimum points.
  • Now we have to find the second derivative.
  1. f``(x) is less than 0 then the given function is said to be maxima
  2. If f``(x) Is greater than 0 then the function is said to be minima

 

Calculation:

Let f(x) = x3 - 12x2 + kx – 8

Differentiating with respect to x, we get

⇒ f’(x) = 3x2 – 24x + k

It is given that function attains its maximum value of the interval [0, 3] at x = 2

∴ f’(2) = 0

⇒ 3 × 22 – (24 × 2) + k = 0

∴ k = 36

Applications of Derivatives Question 2:

Find the interval in which the function f(x) = x2 - 4x is strictly increasing ?

  1. [2, ∞)
  2. (2, ∞)
  3. (0, ∞)
  4. (-∞ , 2)

Answer (Detailed Solution Below)

Option 2 : (2, ∞)

Applications of Derivatives Question 2 Detailed Solution

Concept:  

If f′(x) >  0 at each point in an interval, then the function is said to be strictly increasing.

Calculations:

Given , f(x) = x2 - 4x 

Differentiating, we get

f'(x) = 2x - 4

f(x) is strictly increasing function

∴ f'(x) > 0

⇒ 2x - 4 > 0

⇒ x > 2

∴ x ∈ (2, ∞)

Mistake Points

If a, b ∈ R and a < b, the following is a representation of the open and closed intervals:

  • Open interval is indicated by (a, b) = {x : a < y < b}, i.e. 'a' and 'b' are not included.
  • Closed interval is indicated by [a, b] = {x : a ≤ x ≤ b}, i.e. 'a' and 'b' are included.
  • [a, b) = {x : a ≤ x < b} is an open interval from a to b, inclusive of 'a' but excluding 'b'.
  • (a, b ] = { x : a < x ≤ b } is an open interval from a to b including 'b' but excluding 'a'.

 

Since '2' is not included here, Option (1) will not be correct.

Applications of Derivatives Question 3:

The equation of the tangent line to the curve y = 2x sin x at the point \(\left(\frac \pi 2, \pi\right)\) is

  1. y = 2x + 2π
  2. y = 2x
  3. y = -2x + 2π
  4. y = -2x

Answer (Detailed Solution Below)

Option 2 : y = 2x

Applications of Derivatives Question 3 Detailed Solution

Concept:

The equation of tangent at point (x, y1) with slope m is given by 

\(\rm (y - y_1) = m (x - x_1)\)

 

Calculations:

Given curve is y = 2x sin x 

Taking derivative on both side, we get

\(\rm \dfrac {dy}{dx}= 2x \;cos\;x + 2 \;sin\;x\)

Put x = \(\rm \dfrac{\pi}{2}\) to find the equation of tangent at the point \(\left(\frac \pi 2, \pi\right)\).

\(\rm \dfrac {dy}{dx}= 2 \dfrac {\pi}{2} \;cos\; \dfrac {\pi}{2} + 2 \;sin\; \dfrac {\pi}{2}\)

\(\rm \dfrac {dy}{dx}= 2\)

The equation of tangent at point (x, y1) with slope m is given by 

\(\rm (y - y_1) = m (x - x_1)\)

\(\rm (y - {\pi}) = 2 (x - \dfrac{\pi}{2})\)

y = 2x

Hence, the equation of the tangent line to the curve y = 2x sin x at the point \(\left(\frac \pi 2, \pi\right)\) is 2x.

Applications of Derivatives Question 4:

The derivative of \({\rm{ta}}{{\rm{n}}^{ - 1}}\left( {\frac{{{\rm{sin\;x}} \:- \:{\rm{cos\;x}}}}{{\sin x \:+ \:{\rm{cos\;x}}}}} \right) \), with respect to \(\frac{x}{2},~\text{where }\!\!~\!\!\text{ }\left( x\in \left( 0,~\frac{\pi }{2} \right) \right)\) is:

  1. 1
  2. \(\frac{2}{3}\)
  3. \(\frac{1}{2}\)
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Applications of Derivatives Question 4 Detailed Solution

From the question, the derivative given is:

\({\rm{ta}}{{\rm{n}}^{ - 1}}\left( {\frac{{{\rm{sin\;x}} \:- \:{\rm{cos\;x}}}}{{\sin x \:+ \:{\rm{cos\;x}}}}} \right) \)

Now,

\( \Rightarrow {\rm{y}} = {\rm{\;ta}}{{\rm{n}}^{ - 1}}\left( {\frac{{{\rm{sin\;x}} - {\rm{cos\;x}}}}{{\sin x + {\rm{cos\;x}}}}} \right)\)

\(\left[ {\begin{array}{*{20}{c}} {\tan \left( {A - B} \right) = \frac{{{\rm{tan\;}}A - {\rm{tan\;}}B}}{{1 + {\rm{tan\;}}A\;{\rm{tan\;}}B}}}\\ {tan\left( {\frac{\pi }{4}} \right) = 1} \end{array}} \right]\)

\( \Rightarrow {\rm{y}} = {\rm{\;ta}}{{\rm{n}}^{ - 1}}\left( {\frac{{{\rm{tan\;x}} - {\rm{1}}}}{{\tan x + {\rm{1}}}}} \right)\)

\( \Rightarrow {\rm{y}} = {\rm{\;ta}}{{\rm{n}}^{ - 1}}\left( {\frac{{{\rm{tan\;x}} - {\rm{1}}}}{{\ {\rm{1}}+\tan x}}} \right)\)

\(\Rightarrow y = \;ta{n^{ - 1}}\left( {\frac{{{{\rm{tan\;}}x- \rm{tan}}\left( {\frac{\pi }{4}} \right) }}{{1 + {\rm{tan}}\left( {\frac{\pi }{4}} \right){\rm{tan\;}}x}}} \right)\)

\(\Rightarrow y = \;ta{n^{ - 1}}\left( {{\rm{tan}}\left( {x - \frac{\pi }{4}} \right)} \right)\)

\(\therefore y = x - \frac{\pi }{4} \)

From the question, let’s assume,

\(z = \frac{x}{2}\)

From the question, we need to find \(\frac{{dy}}{{dz}}\).

\(\Rightarrow \frac{{dy}}{{dz}} = \frac{{dy/dx}}{{dz/dx}}\)

Now,

\(\Rightarrow \frac{{dy}}{{dx}} = 1\)

\(\Rightarrow \frac{{dz}}{{dx}} = \frac{1}{2}\)

Now,

\(\Rightarrow \frac{{dy}}{{dz}} = \frac{1}{{1/2}}\)

\(\therefore \frac{{dy}}{{dz}} = 2\)

Applications of Derivatives Question 5:

The maximum value of \(\rm \frac{(log x)}{x}\) is

  1. 1
  2. 2/e
  3. e
  4. 1/e

Answer (Detailed Solution Below)

Option 4 : 1/e

Applications of Derivatives Question 5 Detailed Solution

Concept:

Differentiation formula

Quotient rule:

\(\rm \frac{d}{dx} (\frac{u}{v}) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}\)

Calculation:

f(x) = \(\rm \frac{(log x)}{x}\)

⇒ f'(x) = \(\rm \frac{1}{x^{2}} - \frac{log x}{x^{2}}\)

⇒ f′(x) = 0 at x = e

⇒ f′(x) > 0 when x < e

⇒ f′(x) < 0 when x > e

So, f(x) is maxima at x = e

⇒  f(e) = \(\rm \frac{1}{e}\)

∴ The maximum value of \(\rm \frac{(log x)}{x}\) is \(\rm \frac{1}{e}\)

Applications of Derivatives Question 6:

Find the value of x for which f(x) = x - ex is an increasing function

  1. (0, ∞)
  2. [0, ∞)
  3. (-∞, 0)
  4. None of the above 

Answer (Detailed Solution Below)

Option 3 : (-∞, 0)

Applications of Derivatives Question 6 Detailed Solution

Concept:

  • If f′(x) > 0 then the function is said to be increasing.
  • If f′(x) < 0 then the function is said to be decreasing.

Calculation:

Given:

f(x) = x - ex

Differentiating with respect to x, we get

⇒ f’(x) = 1 - ex

For increasing function,

f'(x) > 0

⇒ 1 – ex > 0

⇒ ex < 1

⇒ ex < e0

∴ x < 0

So, x ∈ (-∞, 0) 

Applications of Derivatives Question 7:

Let \({\rm{f}}\left( {\rm{x}} \right) = {\rm{x}} + \frac{1}{{\rm{x}}}\), where x ∈ (0, 1). Then which one of the following is correct?

  1. f(x) fluctuates in the interval
  2. f(x) increases in the interval
  3. f(x) decreases in the interval
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : f(x) decreases in the interval

Applications of Derivatives Question 7 Detailed Solution

Concept:

Monotonic function: If a function is differentiable on the interval (a, b) and if the function is increasing/strictly increasing or decreasing/strictly decreasing, then the function is known as monotonic function.

First derivative test:

  • If \(\frac{{{\rm{df}}\left( {\rm{x}} \right)}}{{{\rm{dx}}}} \ge 0\) for all x in (a, b) then, f(x) is an increasing function in (a, b).
  • If \(\frac{{{\rm{df}}\left( {\rm{x}} \right)}}{{{\rm{dx}}}} \le 0\) for all x in (a, b) then, f(x) is an decreasing function in (a, b).


For strictly increasing or decreasing:

  • \(\frac{{{\rm{df}}\left( {\rm{x}} \right)}}{{{\rm{dx}}}} > 0\) for strictly increasing.
  • \(\frac{{{\rm{df}}\left( {\rm{x}} \right)}}{{{\rm{dx}}}} < 0\) for strictly decreasing.


Calculation:

Given: \({\rm{f}}\left( {\rm{x}} \right) = {\rm{x}} + \frac{1}{{\rm{x}}}\)

Differentiating w.r.t x

\(\Rightarrow {\rm{f'}}\left( {\rm{x}} \right) = 1 - \frac{1}{{{{\rm{x}}^2}}}\)

\(\Rightarrow {\rm{f'}}\left( {\rm{x}} \right) =\rm \frac{x^2 -1}{x^2}= \rm \frac{(x -1)(x+1)}{x^2}\)

So, for x ∈ (0, 1), f’(x) < 0.

Hence, f(x) is decreases for x ∈ (0, 1).

Applications of Derivatives Question 8:

The radius of the circle is increasing at the rate of 0.8 cm/sec. What is the rate of increase of its circumference ?

  1. \(\frac{{4\pi}}{{5}}\)
  2. \(\frac{{8\pi}}{{5}}\)
  3. \(\frac{{3\pi}}{{5}}\)
  4. None of these

Answer (Detailed Solution Below)

Option 2 : \(\frac{{8\pi}}{{5}}\)

Applications of Derivatives Question 8 Detailed Solution

Concept:

Circumference of circle = 2πr, where r is the radius of the circle.

Calculation:

Given: \(\frac{{dr}}{{dt}} = 0.8\;cm/sec\) .

Circumference of circle (C) = 2πr

Differentiating both the sides with respect to t, we get:

⇒  \(\frac{{dC}}{{dt}} = 2π \times \frac{{dr}}{{dt}}\)        ----(1)

By, substituting the values of \(\frac{{dr}}{{dt}}\) the equation(1), we get:

⇒ \(\frac{{dC}}{{dt}} = 2π \times 0.8 = \frac{{8\pi}}{{5}}\)

Applications of Derivatives Question 9:

The radius of a cylinder is increasing at the rate of 3 m / s and its altitude is decreasing at the rate of 4 m / s. The rate of change of volume when radius is 4 m and altitude is 6 m is:

  1. 80 m3 / s
  2. 144 π m3 / s
  3. 64 m3 / s
  4. 80 π m3 / s

Answer (Detailed Solution Below)

Option 4 : 80 π m3 / s

Applications of Derivatives Question 9 Detailed Solution

CONCEPT:

  • If y = f(x), then dy/dx denotes the rate of change of y with respect to x its value at x = a is denoted by: \({\left[ {\frac{{dy}}{{dx}}} \right]_{x = a}}\)
  • Decreasing rate is represented by negative sign whereas increasing rate is represented by positive sign.
  • Volume of cylinder is given by: πr2h where r is the radius and h is the altitude.

CALCULATION:

Given: dr/dt = 3m/s and dh/dt = - 4m/s

As we know that, volume of cylinder is given by: πr2h where r is the radius and h is the altitude.

Let V = πr2h

Now by differentiating v with respect to t we get,

\(\Rightarrow \frac{{dV}}{{dt}} = 2\pi rh \cdot \frac{{dr}}{{dt}} + \pi {r^2} \cdot \frac{{dh}}{{dt}}\)

Now by substituting r = 4m, h = 6m, dr/dt = 3m/s and dh/dt = - 4m/s we get,

\(\Rightarrow {\left( {\frac{{dV}}{{dt}}} \right)_{\left( {r = 4,\;\;\;h = 6} \right)}} = 2\pi \cdot \left( 4 \right) \cdot \left( 6 \right) \cdot \left( 3 \right) + \pi \cdot {\left( 4 \right)^2} \cdot \left( { - \;4} \right) = 80\pi \)

Hence, option D is the correct answer.

Applications of Derivatives Question 10:

Find the approximate value of f (3.01), where f(x) = 3x2 +  3.

  1. 30.18
  2. 30.018
  3. 30.28
  4. 30.08

Answer (Detailed Solution Below)

Option 1 : 30.18

Applications of Derivatives Question 10 Detailed Solution

Concept: 

Let small charge in x be Δx and the corresponding change in y is Δy.

\(\rm Δ y = \rm \dfrac{dy}{dx}Δ x = f'(x) Δ x \)

Now that Δy = f(x + Δx) - f(x)

Therefore, f(x + Δx) = f(x) + Δy

Calculation: 

Given:f(x) = 3x2 +  3

Let x + Δx = 3.01 = 3 + 0.01

Therefore, x = 3 and Δx = 0.01

f(x + Δx) = f(x) + Δy

= f(x + Δx) = f(x) + f'(x)Δx

= f(3.01) = 3x2 +  3 + (6x)Δx

= f(3.01) = 3(3)2 + 3 + (6⋅3)(0.01)

= f(3.01) = 30 + 0.18

= f(3.01) = 30.18

Get Free Access Now
Hot Links: teen patti casino teen patti dhani teen patti master gold download