Types of Matrices MCQ Quiz - Objective Question with Answer for Types of Matrices - Download Free PDF

Last updated on Jul 4, 2025

Latest Types of Matrices MCQ Objective Questions

Types of Matrices Question 1:

If \(A=\begin{bmatrix}x&y&z\\y&z&x\\z&x&y\end{bmatrix}\)

where x,y,z are integers, is an orthogonal matrix, then what is A2 equal to?

  1. Null matrix 
  2. Identity matrix
  3. A
  4. -A

Answer (Detailed Solution Below)

Option 2 : Identity matrix

Types of Matrices Question 1 Detailed Solution

Calculation:

Given,

Matrix A is defined as:

\(A = \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix}\)

It is mentioned that A is an orthogonal matrix. Therefore,

\(A^T A = I\)

Now, we calculate A2:

\(A^2 = A \cdot A\)

\(A^2 = \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix} \cdot \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix}\)

Since A is orthogonal, \(A^T A = I\), and hence:

\(A^2 = I\)

∴ A2 = Identity matrix (I).

Hence, the Correct answer is Option 2.

Types of Matrices Question 2:

Let A, B, C be 3 × 3 matrices such that A is symmetric and B and C are skew-symmetric.

Consider the statements

(S1)A13B26 – B26A13 is symmetric

(S2) A26C13 – C13A26 is symmetric

Then,

  1. Only S2 is true
  2. Only S1 is true
  3. Both S1 and S2 are false 
  4. Both S1 and S2 are true

Answer (Detailed Solution Below)

Option 1 : Only S2 is true

Types of Matrices Question 2 Detailed Solution

Calculation: 

Given, AT = A, BT = –B, CT = –C

Let M = A13B26 – B26A13

⇒ Then, MT = (A13B26 – B26A13)T

= (A13B26)T – (B26A13)T

= (BT)26(AT)13 – (AT)13(BT)26

= B26A13 – A13 B26 = –M

Hence, M is skew symmetric

Let, N = A26C13 – C13A26

⇒ then, NT = (A26C13)T – (C13A26)T

= –(C)13(A)26+ A26C13 = N

Hence, N is symmetric.

∴ Only S2 is true.

Hence, the correct answer is Option 1.

Types of Matrices Question 3:

The matrix \(\left[ {\begin{array}{*{20}{c}} 0&{ - 4 + i}\\ {4 + i}&0 \end{array}} \right]\) is

  1. symmetric
  2. skew-symmetric
  3. Hermitian
  4. Skew-Hermitian
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : Skew-Hermitian

Types of Matrices Question 3 Detailed Solution

Concept:

1. Symmetric Matrix: Square matrix A is said to be symmetric if the transpose of matrix A is equal to matrix A itself AT = A or A’ = A

2. Skew-Symmetric Matrix or Anti-symmetric: Square matrix A is said to be skew-symmetric if transpose of matrix A is equal to negative of matrix A ⇔ AT = −A

3. Hermitian Matrix:  A Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose ⇔ \({{\bf{A}}^{\bf{T}}} = \;{\bf{\bar A}}\)

4. Skew-Hermitian: \({{\bf{A}}^{\bf{T}}} = - {\bf{\bar A}}\)

5. Let z = x + iy be a complex number.

  • Conjugate of z =  = x – iy


Calculation:

Let A = \(\left[ {\begin{array}{*{20}{c}} 0&{ - 4 + i}\\ {4 + i}&0 \end{array}} \right]\)

Now, transpose of matrix A

 AT\(\left[ {\begin{array}{*{20}{c}} 0&{4 + i}\\ { - 4 + i}&0 \end{array}} \right]\)

⇒ AT ≠ A

∴ given matrix is not symmetric

AT\(\left[ {\begin{array}{*{20}{c}} 0&{4 + i}\\ { - 4 + i}&0 \end{array}} \right] \ne - {\rm{A}}\)

∴ given matrix is not skew-symmetric.

Now, Conjugate of matrix A

\({\rm{\bar A}} = \;\left[ {\begin{array}{*{20}{c}} 0&{\overline { - 4 + i} }\\ {\overline {4 + i} }&0 \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 0&{ - 4 - i}\\ {4 - i}&0 \end{array}} \right] = \; - \left[ {\begin{array}{*{20}{c}} 0&{4 + i}\\ { - \;4 + i}&0 \end{array}} \right]\)
 

\( \Rightarrow {\rm{\bar A}} = - \;{{\rm{A}}^{\rm{T}}}\)

∴ given matrix is skew-hermitian matrix.

Types of Matrices Question 4:

If \(\rm A=\frac{1}{3}\begin{bmatrix}1&2&2\\\ 2&1&-2\\\ x&2&y\end{bmatrix}\) is an orthogonal matrix, then (x + y) is equal to -

  1. 9
  2. -9
  3. 3
  4. -3
  5. 2

Answer (Detailed Solution Below)

Option 4 : -3

Types of Matrices Question 4 Detailed Solution

Explanation:

\(\rm A=\frac{1}{3}\begin{bmatrix}1&2&2\\\ 2&1&-2\\\ x&2&y\end{bmatrix}\) is orthogonal matrix.

So, AAt = I

⇒ \(\frac{1}{3}\begin{bmatrix}1&2&2\\\ 2&1&-2\\\ x&2&y\end{bmatrix}\)\(\frac{1}{3}\begin{bmatrix}1&2&x\\\ 2&1&2\\\ 2&-2&y\end{bmatrix}\) = \(\begin{bmatrix}1&0&0\\\ 0&1&0\\\ 0&0&1\end{bmatrix}\)

⇒ \(\frac{1}{9}\begin{bmatrix}9&0&x+4+2y\\\ 0&9&2x+2-2y\\\ x+4+2y&2x+2-2y&x^2+4y+y^2\end{bmatrix}\) = \(\begin{bmatrix}1&0&0\\\ 0&1&0\\\ 0&0&1\end{bmatrix}\)

Comparing both sides we get

x + 4 + 2y = 0....(i)

2x + 2 - 2y = 0

⇒ x - y + 1 = 0...(ii)

Subtracting them 

3y = - 3 ⇒ y = -1

putting in (i) we get

x + 1 + 1 = 0

x = -2

Hence x + y = - 1 - 2 = -3

Option (4) is true.

Types of Matrices Question 5:

If  A = (aij)2×2 and \(\rm a_{ij}=\left\{\begin{matrix}i^2+j^2;i\ne j\\\ i-j; i=j\end{matrix}\right\}\) then A-1 is equal to

  1. \(\rm \begin{bmatrix}0&5\\\ 5&0\end{bmatrix}\)
  2. \(\rm \begin{bmatrix}0&-\frac{1}{5}\\\ -\frac{1}{5}&0\end{bmatrix}\)
  3. \(\rm \begin{bmatrix}0&-5\\\ -5&0\end{bmatrix}\)
  4. \(\rm \begin{bmatrix}\frac{1}{5}&0\\\ 0&\frac{1}{5}\end{bmatrix}\)
  5. \(\rm \begin{bmatrix}\frac{1}{5}&0\\\ 1&\frac{1}{5}\end{bmatrix}\)

Answer (Detailed Solution Below)

Option 2 : \(\rm \begin{bmatrix}0&-\frac{1}{5}\\\ -\frac{1}{5}&0\end{bmatrix}\)

Types of Matrices Question 5 Detailed Solution

Explanation:

A = (aij)2×2 and \(\rm a_{ij}=\left\{\begin{matrix}i^2+j^2;i\ne j\\\ i-j; i=j\end{matrix}\right\}\)

Then

A = \(\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}\) = \(\begin{bmatrix}0&5\\5&0\end{bmatrix}\)
 
|A| = 0 - 25 = -25
 
A-1\({1\over |A|}adj(A)\)
     = \(\frac1{25}\begin{bmatrix}0&-5\\-5&0\end{bmatrix}\)
    = \(\rm \begin{bmatrix}0&-\frac{1}{5}\\\ -\frac{1}{5}&0\end{bmatrix}\)
 
(2) is true. 

Top Types of Matrices MCQ Objective Questions

If A is a square matrix such that A2 = I, then A3 + (A + I)2 - 9A - I- A2 is

  1. -10A
  2. 10A
  3. -6A
  4. 6A

Answer (Detailed Solution Below)

Option 3 : -6A

Types of Matrices Question 6 Detailed Solution

Download Solution PDF

Concept:

Properties of identity matrix:

If A is the square matrix of order n × n

  • AI = IA = A
  • In = I           (Where n ∈ N)

 

Calculation:

Given

A2 = I

Now, A3 + (A + I)2 - 9A - I2 - A2

= A2. A + A2 + I2 + 2AI - 9A - I- A2

= I. A + I + I + 2AI - 9A - I - I           [∵ A2 = I and AI = IA = A]

= AI + 2AI - 9A 

= 3AI - 9A

= 3A - 9A

= - 6A

Which one of the following matrices is an elementary matrix?

  1. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&0\\ 0&0&1 \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} 1&5&0\\ 0&1&0\\ 0&0&1 \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} 0&2&0\\ 1&0&0\\ 0&0&1 \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 0&5&2 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 2 : \(\left[ {\begin{array}{*{20}{c}} 1&5&0\\ 0&1&0\\ 0&0&1 \end{array}} \right]\)

Types of Matrices Question 7 Detailed Solution

Download Solution PDF

Concept:

  • Elementary matrix: An elementary matrix is a matrix which differs from the identity matrix by one single elementary row operation
  • An elementary matrix has each diagonal element 1.


Calculation:

Let's check option b,

Let E = \(\left[ {\begin{array}{*{20}{c}} 1&5&0\\ 0&1&0\\ 0&0&1 \end{array}} \right]\)

Apply R1 → R1 – 5R2

\( \Rightarrow {\rm{E\;}} = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right] = \;{{\rm{I}}_{3{\rm{\;}} \times 3}}\)

We can see that option B converted in to an identity matrix by one elementary operation.

Hence Option B is correct.

Shortcut Method:

We know that an elementary matrix has each diagonal element 1.

Only B has diagonal element is 1. (By Definition)

So, Option B is correct.

The matrix \(\rm \begin{bmatrix} 3 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 0 \end{bmatrix}\) is a 

  1. identity matrix
  2. symmetric matrix
  3. skew symmetric matrix
  4. none of these

Answer (Detailed Solution Below)

Option 2 : symmetric matrix

Types of Matrices Question 8 Detailed Solution

Download Solution PDF

Concept:

A square matrix A = [aij]n × n is said to be symmetric if AT = A

AT (Transpose) is obtained by changing rows to columns and columns to rows

Calculation:

Let A = \(\rm \begin{bmatrix} 3 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 0 \end{bmatrix}\)

 AT = \(\rm \begin{bmatrix} 3 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 0 \end{bmatrix}\) = A

 A is  a symmetric matrix

If A is a square matrix such that A2 = I, then (A – I)3 + (A + I)3 – 7A is equal to

  1. A
  2. I – A
  3. I + A
  4. 3A

Answer (Detailed Solution Below)

Option 1 : A

Types of Matrices Question 9 Detailed Solution

Download Solution PDF

Concept:

Identity matrix: A square matrix in which elements in the main diagonal are all '1' and the rest are all zero is called an identity matrix or unit matrix.

Thus, the square matrix A = [\(a_{ij}\)], if \(a_{ij}=\left\{\begin{matrix}1,if \hspace{3mm} i= j \\ 0,if \hspace{3mm} i\neq j \end{matrix}\right.\)

e.g., \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}\)are identity matrices of order 2 and 3 respectively.

For any natural number n, In = I.ij]nneeeIn\(I^n = I\)

Calculation:

We have, A2 =I

Also A and i are commutative, so we can expand (A + I)n using the expansion of (a+ b)n.

(A – I)3 + (A + I)3 – 7A

= A3 - 3A+ 3A - I3 + A3 + 3A+ 3A + I- 7A

= 2A+ 6A - 7A

= 2A⋅A + 6A - 7A

= 2I ⋅A + 6A - 7A

= 2A + 6A - 7A

= 8A - 7A

= A

If A is skew symmetric matrix, then A2 is a 

  1. null matrix
  2. unitary matrix
  3. skew symmetic
  4. symmetric

Answer (Detailed Solution Below)

Option 4 : symmetric

Types of Matrices Question 10 Detailed Solution

Download Solution PDF

CONCEPT:

Symmetric Matrix:

Any real square matrix A = (aij) is said to be symmetric matrix if and only if aij = aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A = At then A is said to be a symmetric matrix.

Skew-symmetric Matrix:

Any real square matrix A = (aij) is said to be skew-symmetric matrix if and only if aij = - aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A = - At then A is said to be a skew-symmetric matrix.

Properties of Transpose of a Matrix:

  • If A is a matrix of order m × n, then (At)t = A
  • If k ∈ R is a scalar and A is a matrix of order m × n, then (k × A)t = k × At
  • If A and B are matrices of same order m × n, then (A ± B)t = At ± Bt.

CALCULATION:

Given: A is skew symmetric matrix

As we know that, if A is a skew symmetric matrix i.e A = - At 

⇒ (A2)t = (At)2

∵ A is skew symmetric matrix

⇒ (A2)t = (- A)2 = A2

So, A2 is a symmetric matrix.

Hence, option D is the correct answer.

The matrix \(\left[ {\begin{array}{*{20}{c}} 0&{ - 4 + i}\\ {4 + i}&0 \end{array}} \right]\) is

  1. symmetric
  2. skew-symmetric
  3. Hermitian
  4. Skew-Hermitian

Answer (Detailed Solution Below)

Option 4 : Skew-Hermitian

Types of Matrices Question 11 Detailed Solution

Download Solution PDF

Concept:

1. Symmetric Matrix: Square matrix A is said to be symmetric if the transpose of matrix A is equal to matrix A itself AT = A or A’ = A

2. Skew-Symmetric Matrix or Anti-symmetric: Square matrix A is said to be skew-symmetric if transpose of matrix A is equal to negative of matrix A ⇔ AT = −A

3. Hermitian Matrix:  A Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose ⇔ \({{\bf{A}}^{\bf{T}}} = \;{\bf{\bar A}}\)

4. Skew-Hermitian: \({{\bf{A}}^{\bf{T}}} = - {\bf{\bar A}}\)

5. Let z = x + iy be a complex number.

  • Conjugate of z =  = x – iy


Calculation:

Let A = \(\left[ {\begin{array}{*{20}{c}} 0&{ - 4 + i}\\ {4 + i}&0 \end{array}} \right]\)

Now, transpose of matrix A

 AT\(\left[ {\begin{array}{*{20}{c}} 0&{4 + i}\\ { - 4 + i}&0 \end{array}} \right]\)

⇒ AT ≠ A

∴ given matrix is not symmetric

AT\(\left[ {\begin{array}{*{20}{c}} 0&{4 + i}\\ { - 4 + i}&0 \end{array}} \right] \ne - {\rm{A}}\)

∴ given matrix is not skew-symmetric.

Now, Conjugate of matrix A

\({\rm{\bar A}} = \;\left[ {\begin{array}{*{20}{c}} 0&{\overline { - 4 + i} }\\ {\overline {4 + i} }&0 \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 0&{ - 4 - i}\\ {4 - i}&0 \end{array}} \right] = \; - \left[ {\begin{array}{*{20}{c}} 0&{4 + i}\\ { - \;4 + i}&0 \end{array}} \right]\)
 

\( \Rightarrow {\rm{\bar A}} = - \;{{\rm{A}}^{\rm{T}}}\)

∴ given matrix is skew-hermitian matrix.

If a matrix A is Symmetric as well as Skew-Symmetric, then:

  1. A is a diagonal matrix
  2. A is a unit matirx
  3. A is a triangular matirx
  4. A is a null matrix

Answer (Detailed Solution Below)

Option 4 : A is a null matrix

Types of Matrices Question 12 Detailed Solution

Download Solution PDF

Concept:

Consider a matrix A is skew-symmetric, then AT = −A
and A is symmetric, then AT = A

Calculation:

Since, A is skew-symmetric.
AT = −A
Since, A is symmetric.
AT = A
⇒ −A = A
⇒2A = O
⇒A = O
Hence, A is a null matrix.

Hence, option (4) is correct.

If \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right],\) then the matrix A is a/an

  1. Singular matrix
  2. involuntary matrix
  3. Nilpotent matrix
  4. Idempotent matrix

Answer (Detailed Solution Below)

Option 2 : involuntary matrix

Types of Matrices Question 13 Detailed Solution

Download Solution PDF

Concept:

Singular Matrix: Any square matrix of order n is said to be singular if |A| = 0.

Involuntary Matrix: Any square matrix of order n is said to be an involuntary matrix if A2 = I, where I is the identity matrix of order n.

Nilpotent Matrix: Any square matrix of order n is said to be nilpotent matrix if there exist least positive integer m such that Am = O, where O is the null matrix of order n.

Idempotent Matrix: Any square matrix of order n is said to be an idempotent matrix if A2 = A.

Calculation:

Given: \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right],\)

\(\Rightarrow \;{A^2} = \;\left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right] \times \;\left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right] \\= \;\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = I\)

Hence, A is an involuntary matrix as A2 = I.

If A and B are symmetric matrices, then AB – BA is:

  1. Null matrix
  2. Symmetric matrix
  3. Skew-symmetric matrix
  4. None of these

Answer (Detailed Solution Below)

Option 3 : Skew-symmetric matrix

Types of Matrices Question 14 Detailed Solution

Download Solution PDF

Concept:

  • For symmetric matrices, A = A' and B = B'
  • For skew-symmetric matrices, A = - A'
  • (A ± B)' = A' ± B'
  • (AB)' = B'A'

Calculation:

Given: A and B are symmetric matrices

As we know that for symmetric matrices, we have A = A' and B = B'

(AB - BA)' = (AB)' - (BA)' --------(∵ (A ± B)' = A' ± B')

⇒ (AB - BA)' = B'A' - A'B' --------(∵ (AB)' = B'A')

⇒ (AB - BA)' = BA - AB ----------(∵ A = A' and B = B')

⇒ (AB - BA)' = - (AB - BA)

Hence Option 3 is correct.

How many distinct matrices exist with all four entries taken from (1, 2)?

  1. 16
  2. 24
  3. 32
  4. 48

Answer (Detailed Solution Below)

Option 4 : 48

Types of Matrices Question 15 Detailed Solution

Download Solution PDF

Explanation:

Here we have to fill 4 entries it means we can form 2 × 2 matrices, 4 × 1 and 1 × 4 matrices

In 2 × 2 matrices, there are four places 

And each place has two ways to fill (1, 2) 

So, The total number of ways to fill the entries =  2 × 2 × 2 × 2 = 16.

In 4 × 1 matrices, there are four places

And each place has two ways to fill (1, 2) 

So, The total number of ways to fill the entries =  2 × 2 × 2 × 2 = 16.

Similarly in case of 1 × 4 matrices total number of ways = 16.

∴ Total number of matrices will be 48.

Get Free Access Now
Hot Links: teen patti tiger teen patti dhani teen patti joy mod apk teen patti yes teen patti - 3patti cards game downloadable content