Special Functions MCQ Quiz - Objective Question with Answer for Special Functions - Download Free PDF

Last updated on Jul 4, 2025

Latest Special Functions MCQ Objective Questions

Special Functions Question 1:

The value of the expression

 Let a = 1 + 2C2/3! + 3C2/4! + 4C2/5! + ...    and 

b = 1 + (1C0 + 1C1)/1! + (2C0 + 2C1 + 2C2)/2! + (3C0 + 3C1 + 3C2 + 3C3)/3! + ... 

Then the value of (8b / a2) is ______.

  1. 4
  2. 8
  3. 16
  4. 32

Answer (Detailed Solution Below)

Option 4 : 32

Special Functions Question 1 Detailed Solution

Concept:

Exponential Generating Function & Series Coefficients:

  • The expression uses combinations nCr and factorials, hinting at exponential and binomial expansion identities.
  • Function f(x) = 1 + (1 + x)/1! + (1 + x)2/2! + (1 + x)3/3! + ... is considered to evaluate the coefficient of x2.
  • This function can be transformed using the identity: e1+x / (1 + x)
  • The coefficient of x2 in this expansion corresponds to the RHS of 'a' series.
  • The value of b is derived using the identity: 1 + 2/1! + 22/2! + 23/3! + ... = e2

 

Calculation:

Let f(x) = 1 + (1 + x)/1! + (1 + x)2/2! + (1 + x)3/3! + ...

⇒ f(x) = e(1+x) / (1 + x)

Expand RHS:

= (1 + x + x2/2! + ...) / (1 + x)

⇒ (1 + x + (1 + x)2/2! + (1 + x)3/3! + (1 + x)4/4! + ...)

So, coefficient of x2 in RHS is:

2C2/3! + 3C2/4! + 4C2/5! + ... = a - 1

coefficient of x2 in RHS:

e × (1 + x+ x2/2!) × (1 -x+ x2/2!)

is e- e+ e/2! =a 

Now, expand LHS expression:

e × (1 + x+ x2/2!) × (1 -x+ x2/2!)

⇒ e × (1 - (x4/4!)) = e 

So, coefficient of x2 = e × e = e2

Thus, b = 1 + 2/1! + 22/2! + 23/3! + ... = e2

a = e\2!

⇒ 8b / a2 = 2 × e2 / (e/2!)2 = 32

∴ 8b / a2 = 32

Special Functions Question 2:

Comprehension:

Consider the following for the two (02) items that follow: Let the function , where [] is the greatest integer function and .

What is \(\lim_{x \to 0} \frac{f(x)}{g(x)}\) equal to?

  1. sin1
  2. sin1
  3. 0
  4. Limit does not exist

Answer (Detailed Solution Below)

Option 4 : Limit does not exist

Special Functions Question 2 Detailed Solution

Calculation:

Given,

The function is \( f(x) = \sin(\lfloor x \rfloor) \), where \(\lfloor x \rfloor \) is the greatest integer function, and g(x) = |x| , the absolute value function.

We are tasked with finding:

\( \lim_{x \to 0} \frac{f(x)}{g(x)} \)

For \( g(x) = |x| \), we know that:

\( \lim_{x \to 0} g(x) = 0 \)

For \( f(x) = \sin(\lfloor x \rfloor) \), we know that:

For \( x \to 0^+ \), \( \lfloor x \rfloor = 0 \), so f(x) = sin(0) = 0 .

For \( x \to 0^- \), \( \lfloor x \rfloor = -1 \), so \( f(x) = \sin(-1) \), which is a nonzero constant.

Evaluating the limit:

For \( x \to 0^+ \), \( \frac{f(x)}{g(x)} = \frac{0}{x} = 0 \)

For \( x \to 0^- \), \( \frac{f(x)}{g(x)} = \frac{\sin(-1)}{-x} \), which becomes undefined as \( x \to 0^- \)because the denominator approaches 0, but the numerator remains a nonzero constant.

∴ Since the left-hand and right-hand limits do not match, the limit does not exist.

The correct answer is Option (4):

Special Functions Question 3:

Comprehension:

Consider the following for the two (02) items that follow: Let the function , where [] is the greatest integer function and .

What \(\lim_{x \to 0} {f(x) g(x)}\) is  equal to?

  1. -1
  2. 0
  3. 1
  4. Limit does not exist

Answer (Detailed Solution Below)

Option 2 : 0

Special Functions Question 3 Detailed Solution

Calculation:

Given,

The function is\(f(x) = \sin(\lfloor x \rfloor) \), where\(\lfloor x \rfloor \)is the greatest integer function, and g(x) = |x| , the absolute value function.

We are tasked with finding:

\( \lim_{x \to 0} f(x) g(x) \)

For \(g(x) = |x| \), we know that:

\( \lim_{x \to 0} g(x) = 0 \)

For \(f(x) = \sin(\lfloor x \rfloor) \), we know that:

For \(x \to 0^+ \)), \( \lfloor x \rfloor = 0 \), so f(x) = sin(0) = 0 .

For \( x \to 0^- \), \( \lfloor x \rfloor = -1 \), so \(f(x) = \sin(-1) \), which is a nonzero constant.

Evaluating the limit:

For\(x \to 0^+ \),\(f(x)g(x) = 0 \times x = 0 \)

For\(x \to 0^- \), \(f(x)g(x) = \sin(-1) \times (-x) \), which approaches 0 as \(x \to 0^- .\).

∴ The value of \(\lim_{x \to 0} f(x) g(x) \)is 0.

The correct answer is Option (2).

Special Functions Question 4:

Let  f : ℝ → ℝ be a function defined by f(x) = \(\rm \log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x)+m-2\}\), for some m, such that the range of f is [0, 2]. Then the value of m is _______ 

  1. 5
  2. 3
  3. 2
  4. 4

Answer (Detailed Solution Below)

Option 1 : 5

Special Functions Question 4 Detailed Solution

Calculation: 

Since,

\(-\sqrt{2} \leq \sin \mathrm{x}-\cos \mathrm{x} \leq \sqrt{2} \)

\(\therefore -2 \leq \sqrt{2}(\sin \mathrm{x}-\cos \mathrm{x}) \leq 2 \)

\((\text { Assume } \sqrt{2}(\sin \mathrm{x}-\cos \mathrm{x})=\mathrm{k})\)

⇒ –2 k 2 …(i) 

⇒ \(f(\mathrm{x})=\log _{\sqrt{\mathrm{m}}}(\mathrm{k}+\mathrm{m}-2)\)

Given,

0 f(x) 2

⇒ \(0 \leq \log _{\sqrt{\mathrm{m}}}(\mathrm{k}+\mathrm{m}-2) \leq 2 \)

⇒ \(1 \leq \mathrm{k}+\mathrm{m}-2 \leq \mathrm{m} \)

⇒ \(-\mathrm{m}+3 \leq \mathrm{k} \leq 2 \ldots \text { (ii) }\)

From eq. (i) & (ii), we get –m + 3 = –2

m = 5

Hence, the correct answer is Option 1.

Special Functions Question 5:

Let [.] denote the greatest integer function. If \(\int_{0}^{3} \left[ \frac{1}{e^{x-1}} \right] dx = \alpha - \log_e 2, \text{ then } \alpha^3 \text{ is equal to } \_\_\_\_.\)

Answer (Detailed Solution Below) 8

Special Functions Question 5 Detailed Solution

Concept:

Greatest Integer Function and Definite Integral:

  • The greatest integer function, denoted by [x], gives the largest integer less than or equal to x.
  • To integrate a greatest integer function, divide the integral into intervals where the function is constant.
  • The function inside the integral is f(x) = [1 / ex−1] = [e1−x].
  • We need to evaluate ∫₀³ [e1−x] dx = α − logₑ2.

 

Calculation:

f(x) = [e1−x] is a decreasing function

f(0) = [e1] = [2.718] = 2

f(1−ln2) = e1−(1−ln2) = eln2 = 2

⇒ boundary point

f(x) = 2 for x ∈ [0, 1−ln2)

f(1) = [e0] = [1] = 1

f(x) = 1 for x ∈ [1−ln2, 1)

f(x) < 1 for x ≥ 1 ⇒ [f(x)] = 0

Now break the integral accordingly:

∫₀³ [e1−x] dx = ∫₀1−ln2 2 dx + ∫1−ln21 1 dx + ∫₁³ 0 dx

⇒ 2(1 − ln2) + (1 − (1 − ln2)) + 0

⇒ 2 − 2ln2 + ln2 = 2 − ln2

Given: ∫₀³ [e1−x] dx = α − ln2

Comparing both sides:

α − ln2 = 2 − ln2 ⇒ α = 2

Now, α3 = 23 = 8

∴ The value of α3 is 8.

Top Special Functions MCQ Objective Questions

If \(\rm \log_{3}{(x^{4} - x^3)} - \log_{3} (x - 1) = 3\) then x is equal to ?

  1. 1
  2. 6
  3. 3
  4. 9

Answer (Detailed Solution Below)

Option 3 : 3

Special Functions Question 6 Detailed Solution

Download Solution PDF

Concept:

Logarithm properties:  

Product rule: The log of a product equals the sum of two logs.

\(\rm {\log _a}\left( {mn} \right) = \;{\log _a}m + \;{\log _a}n\)

Quotient rule: The log of a quotient equals the difference of two logs.

\(\rm {\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\)

Power rule: In the log of power the exponent becomes a coefficient.

\(\rm {\log _a}{m^n} = n{\log _a}m\)

 

Formula of Logarithms:

If \(\rm lo{g_a}x = b \) then x = ab (Here a ≠ 1 and a > 0)

 

Calculation:

Given: \(\rm \log_{3}{(x^{4} - x^3)} - \log_{3} (x - 1) = 3\)

\(\rm \Rightarrow \log_{3} \left[{\frac{(x^{4} - x^3)}{(x - 1)}} \right ] = 3\)        (∵ \(\rm {\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\))

\(\rm \Rightarrow \log_{3} \left[{\frac{x^3(x-1)}{(x - 1)}} \right ] = 3\)

\(\rm \Rightarrow \log_{3} x^3 = 3\)

\(\Rightarrow \rm 3\log_3 x = 3\)               (∵ \(\rm {\log _a}{m^n} = n{\log _a}m\)

\(\Rightarrow \rm \log_3 x = 1 \\\therefore x=3\)

Write the logarithmic form of 921/5 = 4.

  1. \(lo{g_{92}}4 = \frac{1}{5}\)
  2. \(lo{g_{\frac{1}{5}}}4 = 92\)
  3. \(lo{g_{92}}\left( {\frac{1}{5}} \right) = 3\)
  4. None of these

Answer (Detailed Solution Below)

Option 1 : \(lo{g_{92}}4 = \frac{1}{5}\)

Special Functions Question 7 Detailed Solution

Download Solution PDF

Concept:

\({a^b} = x \Leftrightarrow lo{g_a}x = b\), where \(a \ne 1\) and a > 0 and x be any number.

Calculation:

Given: 921/5 = 4.

As we know that, \({a^b} = x \Leftrightarrow lo{g_a}x = b.\)

Comparing 921/5 = 4 with \({a^b} = x\) we have,

Here, a = 92, b = 1 / 5 and x = 4.

So, the logarithmic form of 921/5 = 4 is \(lo{g_{92}}4 = \frac{1}{5}\).

What is the value of \({\log _7}{\rm{\;}}{\log _7}\sqrt {7\sqrt {7\sqrt 7 } } \) equal to?

  1. 3 log2 7
  2. 1 – 3 log2 7
  3. 1 – 3 log7 2
  4. \(\frac{7}{8}\)

Answer (Detailed Solution Below)

Option 3 : 1 – 3 log7 2

Special Functions Question 8 Detailed Solution

Download Solution PDF

Concept:

Logarithm properties

  1. Product rule: The log of a product equals the sum of two logs.

\({\log _a}\left( {mn} \right) = \;{\log _a}m + \;{\log _a}n\)

  1. Quotient rule: The log of a quotient equals the difference of two logs.

\({\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\)

  1. Power rule: In the log of a power the exponent becomes a coefficient.

\({\log _a}{m^n} = n{\log _a}m\)

  1. Change of base rule

\({\log _m}n = \frac{{{{\log }_a}n}}{{{{\log }_a}m}}\)

If m = n;
\({\log _m}m = \frac{{{{\log }_a}m}}{{{{\log }_a}m}} = 1\)

  1. \({\log _m}n = \frac{1}{{{{\log }_n}m}}\)

 

Calculation:

Here, we have to find the value of \({\log _7}{\rm{\;}}{\log _7}\sqrt {7\sqrt {7\sqrt 7 } } \)

\({\log _7}{\rm{\;}}{\log _7}\sqrt {7\sqrt {7\sqrt 7 } } \)

= log7 log7 (71/2 × 71/4 × 71/8)

= log7 log7 (7(1/2 + 1/4 + 1/8))

= log7 log7 (7(4 + 2 + 1)/8)

= log7 log7 (77/8)

From power rule;

= log7 (7/8) log77

= log7 (7/8) × 1 = log7 (7/8) = log7 7 – log7 8

= 1 – log7 8 = 1 – log7 23

= 1 – 3 log7 2

If \(\rm \log_{4}{(x^{2} - 1)} - \log_{4} (x + 1) = 1\) then x is equal to ?

  1. 1
  2. 2
  3. 4
  4. 5

Answer (Detailed Solution Below)

Option 4 : 5

Special Functions Question 9 Detailed Solution

Download Solution PDF

Concept:

Logarithm properties:  

Product rule: The log of a product equals the sum of two logs.

\(\rm {\log _a}\left( {mn} \right) = \;{\log _a}m + \;{\log _a}n\)

Quotient rule: The log of a quotient equals the difference of two logs.

\(\rm {\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\)

Power rule: In the log of power the exponent becomes a coefficient.

\(\rm {\log _a}{m^n} = n{\log _a}m\)

 

Formula of Logarithms:

If \(\rm lo{g_a}x = b \) then x = ab (Here a ≠ 1 and a > 0)

 

Calculation:

Given: \(\rm \log_{4}{(x^{2} - 1)} - \log_{4} (x + 1) = 1\)

\(\rm ⇒ \log_{4} \left[{\frac{(x^{2} - 1)}{(x + 1)}} \right ] = 1\)        (∵ \(\rm {\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\))

\(\rm ⇒ \log_{4} \left[{\frac{(x - 1)(x+1)}{(x + 1)}} \right ] = 1\)

\(\rm ⇒ \log_{4} (x -1) = 1\)

⇒ (x - 1) = 4

∴ x = 5

If log10 2 = 0.3010, then log10 80 = ?

  1. 1.240
  2. 0.9030
  3. 3.010
  4. 1.9030

Answer (Detailed Solution Below)

Option 4 : 1.9030

Special Functions Question 10 Detailed Solution

Download Solution PDF

Concept:

Logarithms:

  • If ab = x, then we say that loga x = b.
  • loga a = 1.
  • loga (xy) = loga x + loga y.


Calculation:

We know that 80 = 23 × 10.

Changing the given logarithms to log 2, we get:

log10 80

= log10 (23 × 10)

= log10 23 + log10 10

= 3 (log10 2) + 1

= 3(0.3010) + 1

= 1.9030.

If 5x-1 = (2.5)log105, then what is the value of x ?

  1. 1
  2. log102
  3. log10​5
  4. 2log10​5

Answer (Detailed Solution Below)

Option 4 : 2log10​5

Special Functions Question 11 Detailed Solution

Download Solution PDF

Given:

5x-1 = (2.5)log105

Formula Used:

If ax = n then x = logan

logab = logeb/logea

Calculation:

We have 5x-1 = (2.5)log105

⇒ (2.5)log10= 5x-1 

⇒ log105  = log2.55x-1 

⇒ log105  = (x - 1) log2.55

⇒ (x - 1) = (log105)/(log2.55)

⇒ (x - 1) = log102.5

⇒ x = log102.5 + 1

⇒ x = log102.5 log1010

⇒ x = log1010 × 2.5

⇒ x = log1025

⇒ x = log1052

⇒ x = 2log10​5

∴ The value of x is 2log10​5.

What is the value of \({\log _3}{\log _3}\sqrt {3\sqrt 3 }\) equal to?

  1. 3 log2 (3)
  2. 1 – 3 log2 (2)
  3. 1 – 2 log3 (2)
  4. \(\frac{3}{8}\)

Answer (Detailed Solution Below)

Option 3 : 1 – 2 log3 (2)

Special Functions Question 12 Detailed Solution

Download Solution PDF

Concept:

Logarithm properties

1. Product rule: The log of a product equals the sum of two logs.

\({\log _a}\left( {mn} \right) = \;{\log _a}m + \;{\log _a}n\)

2. Quotient rule: The log of a quotient equals the difference of two logs.

\({\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\)

3. Power rule: In the log of a power the exponent becomes a coefficient.

\({\log _a}{m^n} = n{\log _a}m\)

4. Change of base rule

\({\log _m}n = \frac{{{{\log }_a}n}}{{{{\log }_a}m}}\)

If m = n;

⇒ \({\log _m}m = \frac{{{{\log }_a}m}}{{{{\log }_a}m}} = 1\)

5. \({\log _m}n = \;\frac{1}{{{{\log }_n}m}}\)

Calculation:

Here, we have to find the value of \({\log _3}{\rm{\;}}{\log _3}\sqrt {3\sqrt 3 }\)

Now,

\({\log _3}{\rm{\;}}{\log _3}\sqrt {3\sqrt 3 }\) = log3 log3 (31/2 × 31/4)

= log3 log3 (3(1/2 + 1/4))

= log3 log3 (3(2 + 1)/4)

= log3 log3 (33/4)

From power rule;

= log3 [(3/4)× log33]                [∵ loga (m) n = n × loga (m)]

= log3 (3/4)                  (∵ logm m = 1)

= log3 (3/4) = log3 3 – log3 4

= 1 – log3 4 = 1 – log3 22

= 1 – 2 log3 2

What is \(\frac{1}{{{{\log }_2}N}} + \frac{1}{{{{\log }_3}N}} + \frac{1}{{{{\log }_4}N}} + \ldots + \frac{1}{{{{\log }_{100}}N\;}}\;\) equal to (N ≠ 1)?

  1. \(\frac{1}{{{{\log }_{100!}}N}}\)
  2. \(\frac{1}{{{{\log }_{99!}}N}}\)
  3. \(\frac{{99}}{{{{\log }_{100!}}N}}\)
  4. \(\frac{{99}}{{{{\log }_{99!}}N}}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{{{{\log }_{100!}}N}}\)

Special Functions Question 13 Detailed Solution

Download Solution PDF

Concept:

Formula used:

  • \({\log _a}b = \frac{1}{{{{\log }_b}a}}\)
  • Loga M + loga N = loga (MN)


Factorial:

  • n! = 1 × 2 × 3 × ⋯ × (n – 1) × n

 

Calculation:

Using \({\log _a}b = \frac{1}{{{{\log }_b}a}}\)

\(\frac{1}{{{{\log }_2}{\rm{N}}}} + \frac{1}{{{{\log }_3}{\rm{N}}}} + \ldots + \frac{1}{{{{\log }_{100}}{\rm{N\;}}}} = {\log _{\rm{N}}}2 + {\log _{\rm{N}}}3 + \ldots + {\log _{\rm{N}}}100\)

= logN (2 × 3 × ⋯ × 100)

= logN (100!)

\(= \frac{1}{{{{\log }_{100!}}N}}\)

If x, y, z are three consecutive positive integers, then log (1 + xz) is

  1. log y
  2. log (y/2)
  3. log (2y)
  4. 2 log (y)

Answer (Detailed Solution Below)

Option 4 : 2 log (y)

Special Functions Question 14 Detailed Solution

Download Solution PDF

Concept:

Logarithm Rule

log m= n log m

 

Calculations:

Let x, y, z are three consecutive positive integers.

⇒ y = x + 1 and z = y + 1

⇒ z = x + 2

Consider, log (1 + xz)

= log [1 + x(x+2)]

= log [1 + x2 + 2x]

= log (1 + x)2

= 2 log (1 + x)

= 2 log y

Hence, If x, y, z are three consecutive positive integers, then log (1 + xz) is 2 log y

The value of \(\left\{ {\frac{1}{{{{\log }_9}60}} + \frac{1}{{{{\log }_{16}}60}} + \frac{1}{{{{\log }_{25}}60}}} \right\}\) is - 

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 3 : 2

Special Functions Question 15 Detailed Solution

Download Solution PDF

CONCEPT:

  • By base changing theorem we know that \({\log _b}a = \frac{{{{\log }_x}a}}{{{{\log }_x}b}} = \frac{1}{{{{\log }_a}b}}\).
  • log x (x) = 1

CALCULATION:

Given that \(\left\{ {\frac{1}{{{{\log }_9}60}} + \frac{1}{{{{\log }_{16}}60}} + \frac{1}{{{{\log }_{25}}60}}} \right\}\)

By base changing we can write it as - 

⇒ log609 + log6016 +log6025

By product rule of logarithms we can write it again as - 

⇒ log60(9 x 16 x 25) = log60(3600)

⇒ log60 (60)2 = 2 log60(60) = 2

Therefore, option (3) is the correct answer.

Get Free Access Now
Hot Links: teen patti real teen patti sequence teen patti master purana teen patti real money app