Scalar or Dot Product MCQ Quiz - Objective Question with Answer for Scalar or Dot Product - Download Free PDF
Last updated on Jun 30, 2025
Latest Scalar or Dot Product MCQ Objective Questions
Scalar or Dot Product Question 1:
A line makes angles α, β and γ with the positive directions of the coordinate axes. If , then what is \(\vec{a}.\vec{b}\) equal to?
Answer (Detailed Solution Below)
Scalar or Dot Product Question 1 Detailed Solution
Calculation:
Given,
\( \cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1 \)
Using the identity \( \cos^2(x) = 1 - \sin^2(x) \), we substitute:
\( (1 - \sin^2(\alpha)) + (1 - \sin^2(\beta)) + (1 - \sin^2(\gamma)) = 1 \)
Simplifying the equation:
\( 3 - (\sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma)) = 1 \)
Rearrange to isolate the sine terms:
\( \sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma) = 2 \)
Now, calculate the dot product:
\( \vec{a} \cdot \vec{b} = \sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma) = 2 \)
∴ The value of \( \vec{a} \cdot \vec{b} \)is 2.
Hence, the correct answer is Option 4.
Scalar or Dot Product Question 2:
The vector \(\rm \vec{a}=-\hat{i}+2 \hat{j}+\hat{k}\) is rotated through a right angle, passing through the y-axis in its way and the resulting vector is \(\overrightarrow{\mathrm{b}}\). Then the projection of \(\rm 3 \vec{a}+\sqrt{2 \vec{b}}\) on \(\overrightarrow{\mathrm{c}}=5 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\) is
Answer (Detailed Solution Below)
Scalar or Dot Product Question 2 Detailed Solution
Calculation:
\(\overrightarrow{\mathrm{b}}=\lambda \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{a}} \times \hat{\mathrm{j}})\)
⇒ \(\overrightarrow{\mathrm{b}}=\lambda(-2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)
⇒ \(|\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}| \quad \therefore \sqrt{6}=\sqrt{12}|\lambda| \Rightarrow \lambda= \pm \frac{1}{\sqrt{2}}\)
\(\left(\lambda=\frac{1}{\sqrt{2}} \text { rejected } \because \overrightarrow{\mathrm{b}} \text { makes acute angle with y axis }\right)\)
⇒ \(\overrightarrow{\mathrm{b}}=-\sqrt{2}(-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
⇒ \(\frac{(3 \vec{a}+\sqrt{2 b}) \cdot \vec{c}}{|\vec{c}|}=3 \sqrt{2}\)
Hence, the correct answer is Option 1.
Scalar or Dot Product Question 3:
Let θ be the angle between two unit vectors \(\rm \vec a\ and\ \vec b. \ if\ \vec a+2\vec b\) is perpendicular to \(\rm 5\vec a-4\vec b\) then what is cos θ + cos 2θ equal to?
Answer (Detailed Solution Below)
Scalar or Dot Product Question 3 Detailed Solution
Explanation:
Given:
\(⃗ a+2⃗ b\) and \(\rm 5⃗ a-4⃗ b\) are perpendicular vectors.
⇒ \((⃗ a+2⃗ b).\)\((\rm 5⃗ a-4⃗ b)\) = 0
⇒ \(5|⃗ a|^2 -4⃗ a.⃗ b + 10⃗ a . ⃗ b - 8(⃗ b)^2=0\)
⇒ \(5× 1 + 6⃗ a.⃗ b-8 =0\)
Now \(\vec a, \vec b\) are unit vectors
⇒ \(6 |\vec a||\vec b| Cosθ = 3\)
⇒ 1.1 cosθ =1/2
⇒Cosθ = 1/2
Now
cos2 θ = Cos2θ -1
= 2× 1/4 -1
= \(-\frac{1}{2}\)
Now,
cosθ + cos2θ = 1/2 -1/2 =0
∴The Correct answer is Option a
Scalar or Dot Product Question 4:
If \(\left| {{\rm{\vec a}} + {\rm{\vec b}}} \right| = \left| {{\rm{\vec a}} - {\rm{\vec b}}} \right|\), then which one of the following is correct?
Answer (Detailed Solution Below)
Scalar or Dot Product Question 4 Detailed Solution
Concept:
\(\begin{aligned} |\vec{a}-\vec{b}|^{2} &=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b} \\ &=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}-4 \vec{a} \cdot \bar{b} \\ &=|\vec{a}+\vec{b}|^{2}-4 \vec{a} \cdot \vec{b} \end{aligned}\)
\({\rm{\vec a}}.{\rm{\vec b}}= |{\rm{\vec a}}|.|{\rm{\vec b}}|\cos \theta\)
Vector a is perpendicular to b if \({\rm{\vec a}}.{\rm{\vec b}}= 0\)
Calculation:
\(\left| {{\rm{\vec a}} + {\rm{\vec b}}} \right| = \left| {{\rm{\vec a}} - {\rm{\vec b}}} \right|\)
Squaring both sides,
\(\begin{aligned} |\vec{a}-\vec{b}|^{2} &=|\vec{a}+\vec{b}|^{2}\end{aligned}\)
Now we have,
\(\begin{aligned} |\vec{a}-\vec{b}|^{2} &=|\vec{a}+\vec{b}|^{2}-4 \vec{a} \cdot \vec{b} =|\vec{a}+\vec{b}|^{2}\end{aligned}\\\Rightarrow-4 \vec{a} \cdot \vec{b}=0 \\\Rightarrow \vec{a} \cdot \vec{b} =0\)
∴ Vector a is perpendicular to b
Hence, option (3) is correct.
Scalar or Dot Product Question 5:
For the vectors \(\rm \vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}\), \(\rm (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=\) ________.
Answer (Detailed Solution Below)
Scalar or Dot Product Question 5 Detailed Solution
Calculation
Given: \(\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}\) and \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}\)
\((\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b}\)
⇒ \((\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b} = |\mathbf{a}|^2 - |\mathbf{b}|^2\)
\(|\mathbf{a}|^2 = (1)^2 + (1)^2 + (1)^2 = 1 + 1 + 1 = 3\)
\(|\mathbf{b}|^2 = (1)^2 + (2)^2 + (3)^2 = 1 + 4 + 9 = 14\)
\(|\mathbf{a}|^2 - |\mathbf{b}|^2 = 3 - 14 = -11\)
⇒ \((\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = -11\).
Hence option 2 is correct.
Top Scalar or Dot Product MCQ Objective Questions
If \(\hat{a}, \hat{b}, \hat{c}\), are unit vectors and \(\hat{a}+\hat{b}+\hat{c}=0\) then the value of of \(\hat{a}\cdot \hat{b}+\hat{b}\cdot \hat{c}+\hat{c}\cdot \hat{a}\) is :
Answer (Detailed Solution Below)
Scalar or Dot Product Question 6 Detailed Solution
Download Solution PDFConcept:
Dot Product: it is also called the inner product or scalar product
Let the two vectors are \(\rm \vec a\) and \(\rm \vec b\)
Dot Product of two vectors is given by: \(\rm \vec a.{\rm{\;}}\vec b\) = |a||b| cos θ
Where |\(\rm \vec a\)| = Magnitudes of vectors a, |\(\rm \vec b\)| = Magnitudes of vectors b and θ is the angle between a and b
Formulas of Dot Product:
\(\rm \vec i.\vec i = \vec j.\vec j = \vec k.\vec k = 1\)
\(\rm \vec i.\vec j = \vec j.\vec i = \vec i.\vec k = \vec k.\vec i =\vec j.\vec k= \vec k.\vec j = 0\)
Calculation:
Given that,
(â + b̂ + ĉ) = 0 ----(1)
We know that,
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ (â + b̂ + ĉ)2 = â ⋅ â + b̂ ⋅ b̂ + ĉ ⋅ ĉ + 2(â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â)
From equation (1), we get
⇒ (1 + 1 + 1) + 2 (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = 0
∴ (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = - 3/2
If \(\rm \vec{a}\) and \(\rm \vec{b}\) are mutually perpendicular unit vectors, then \(\rm (3\vec{a}+2\vec{b})\cdot (5\vec{a}-6\vec{b})=\)
Answer (Detailed Solution Below)
Scalar or Dot Product Question 7 Detailed Solution
Download Solution PDFConcept:
If \(\rm \vec{a}\) and \(\rm \vec{b}\) are mutually perpendicular unit vectors \(\rm \vec{a}.\vec{b} = 0= \)\(\rm \vec{b}.\vec{a} = 0\)
\(\rm \vec{a}.\vec{a} = |\vec{a}|^2\), \(\rm \vec{b}.\vec{b} = |\vec{b}|^2\)
Calculations:
Consider, \(\rm (3\vec{a}+2\vec{b})\cdot (5\vec{a}-6\vec{b})\)
Given \(\rm \vec{a}\) and \(\rm \vec{b}\) are mutually perpendicular unit vectors.
So, \(\rm \vec{a}.\vec{b} = 0= \)\(\rm \vec{b}.\vec{a} = 0\)
And \(\rm \vec{a}\) and \(\rm \vec{b}\) are unit vectors
So, \(\rm |\vec{a}|= |\vec{b}| = 1\)
\(\rm (3\vec{a}+2\vec{b})\cdot (5\vec{a}-6\vec{b})\)
\(= \rm 3\vec{a}\cdot 5\vec{a}+2\vec{b}\cdot 5\vec{a} -3\vec{a}\cdot6\vec{b}-2\vec{b}\cdot 6\vec{b}\)
= \(\rm 15|\vec {a}|^2 - 12 |\vec {b}|^2\)
= 15 - 12
= 3
The sum of two vectors \(\rm \vec a\) and \(\rm \vec b\) is a vector \(\rm \vec c\) such that \(\rm \left|\vec a \right|=\left|\vec b \right|=\left|\vec c \right|=2\). Then, the magnitude of \(\rm \vec a -\vec b\) is equal to:
Answer (Detailed Solution Below)
Scalar or Dot Product Question 8 Detailed Solution
Download Solution PDFConcept:
Dot Product of two vectors \(\rm \vec A\) and \(\rm \vec B\) is defined as \(\rm \vec A.\vec B=\rm \left|\vec A\right|\rm \left|\vec B\right|\cos \theta\), where \(\rm \left|\vec A\right|\) is the magnitude of vector \(\rm \vec A\).
\(\rm \vec A.\vec A=\rm \left|\vec A\right|^2\).
Calculation:
We are given that "sum of two vectors \(\rm \vec a\) and \(\rm \vec b\) is a vector \(\rm \vec c\)".
⇒ \(\rm \vec a +\vec b=\vec c\)
Taking dot product of both sides with themselves, the magnitudes will still be equal:
⇒ \(\rm \left(\vec a +\vec b\right).\left(\vec a +\vec b\right)=\left(\vec c\right).\left(\vec c\right)\)
⇒ \(\rm \left|\vec a\right|^2+\left|\vec b\right|^2+2\vec a.\vec b=\left|\vec c\right|^2\)
Since \(\rm \left|\vec a \right|=\left|\vec b \right|=\left|\vec c \right|=2\), we get:
⇒ \(\rm 2^2+2^2+2\vec a.\vec b=2^2\)
⇒ \(\rm 4+4+2\vec a.\vec b=4\)
⇒ \(\rm 2\vec a.\vec b=-4\)
Now, \(\rm \rm \left|\vec a-\vec b\right|^2=\left(\vec a -\vec b\right).\left(\vec a -\vec b\right)\)
= \(\rm \left|\vec a\right|^2+\left|\vec b\right|^2-2\vec a.\vec b\)
= 4 + 4 - (-4)
= 12
⇒ \(\rm \rm \left|\vec a-\vec b\right|=\sqrt{12}=2\sqrt3\).
Find the angle between the vectors \(\vec a = \hat i + \hat j - \hat k \ and \ \vec b =\hat i - \hat j - \hat k\)
Answer (Detailed Solution Below)
Scalar or Dot Product Question 9 Detailed Solution
Download Solution PDFConcept:
If \(\rm \vec{a} \ and \ \vec b\) are two vectors then \(\rm \vec{a}.\vec{b}=|\vec{a}||\vec{b}|cosθ\)
Note: If vectors \(\rm \vec{a} \ and \ \vec b\) are perpendicular to each other then \(\rm \vec{a}.\vec{b}=0\)
Calculation:
Given: \(\vec a = \hat i + \hat j - \hat k \ and \ \vec b =\hat i - \hat j - \hat k\)
Let θ be the angle between the vector \(\rm \vec{a} \ and \ \vec b\)
⇒ \(|\vec a| = \sqrt 3 \ and \ |\vec b| = \sqrt 3\)
We know that,
\(\rm \vec{a}.\vec{b}=|\vec{a}||\vec{b}|cosθ\)
⇒ \((\hat i + \hat j - \hat k) \cdot (\hat i - \hat j - \hat k) = \sqrt 3 \times \sqrt 3 \times cos θ \)
⇒ 1 = 3 cos θ
⇒ \(\rm cos\ θ=\frac{1}{3}\)
⇒ \(\rm θ=cos^{-1}\frac{1}{3}\)
Hence, option 3 is correct.
Find \(|\vec x|\) if \((\vec x - \vec a) \cdot (\vec x + \vec a) = 12\) and \(\vec a\) is a unit vector ?
Answer (Detailed Solution Below)
Scalar or Dot Product Question 10 Detailed Solution
Download Solution PDFCONCEPT:
- \(\vec a \cdot \vec a = |\vec a|^2\)
- \(\vec a \cdot \vec b = \vec b \cdot \vec a\)
- If \(\vec a\) is a unit vector then \(|\vec a| = 1\)
CALCULATION:
Given: \((\vec x - \vec a) \cdot (\vec x + \vec a) = 12\) and \(\vec a\) is a unit vector
⇒ \((\vec x - \vec a) \cdot (\vec x + \vec a) = |\vec x|^2 + \vec x \cdot \vec a - \vec a \cdot \vec x - |\vec a|^2 = 12\)
As we know that, \(\vec a \cdot \vec b = \vec b \cdot \vec a\)
⇒ \((\vec x - \vec a) \cdot (\vec x + \vec a) = |\vec x|^2 - |\vec a|^2 = 12\)
As we know that, if \(\vec a\) is a unit vector then \(|\vec a| = 1\)
⇒ \(|\vec x|^2 = 13 \Rightarrow |\vec x| = \sqrt {13}\)
Hence, correct option is 2.
If \(\vec a, \vec b\) are vectors such that \(|\vec a + \vec b| = \sqrt {29}\) and \(\vec a \times (2\hat i + 3\hat j + 4\hat k) = (2\hat i + 3\hat j + 4\hat k) \times \vec b\) then possible value of \((\vec a + \vec b).(-7\hat i + 2\hat j + 3\hat k)\) is
Answer (Detailed Solution Below)
Scalar or Dot Product Question 11 Detailed Solution
Download Solution PDFConcept:
- The cross product of vector to itself = 0
- The cross product of collinear vectors = 0
- The dot product of collinear vectors = Product of their Magnitudes
- \(\rm \vec a \times \vec b=-\vec b \times \vec a\)
- For dot product \(\rm (\vec P + \vec Q) \cdot \vec R = (\vec P\cdot \vec R) +(\vec Q\cdot \vec R)\)
- For cross product \(\rm (\vec P + \vec Q) ×\vec R = (\vec P×\vec R) + (\vec Q×\vec R) \)
- The unit vector in the direction of a \(\rm \vec P= \hat P={\vec P\over\left|\vec P\right|}\)
- A vector \(\rm \vec X\) in direction of \(\rm \vec P\) = (Magnitude of \(\rm \vec X\)) × \(\rm \hat P\)
Calculation:
Given:
\(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) = (2\hat i + 3\hat j + 4\hat k) × \vec b\)
⇒ \(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) - (2\hat i + 3\hat j + 4\hat k) × \vec b=0\)
⇒ \(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) + \vec b × (2\hat i + 3\hat j + 4\hat k) =0\)
⇒ \(\boldsymbol{\rm(\vec a + \vec b) × (2\hat i + 3\hat j + 4\hat k) =0}\)
It means the \(\rm\vec a + \vec b\) and \(\rm2\hat i + 3\hat j + 4\hat k\) are collinear vectors.
∴ \(\rm\vec a + \vec b = \left|\vec a + \vec b\right| × {2\hat i + 3\hat j + 4\hat k\over \left|2\hat i + 3\hat j + 4\hat k\right|}\)
⇒ \(\rm\vec a + \vec b = \sqrt{29}× {2\hat i + 3\hat j + 4\hat k\over\sqrt{29}}\)
⇒ \(\boldsymbol{\rm\vec a + \vec b = 2\hat i + 3\hat j + 4\hat k}\)
\(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(2\hat i + 3\hat j + 4\hat k\right)\cdot\left(-7\hat i + 2\hat j + 3\hat k\right)\)
⇒ \(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(2\times(-7) + 3\times2 + 4\times3\right)\)
⇒ \(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(-14 +6 + 12\right)\)
⇒ \(\boldsymbol{\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = 4}\)
Value of \([(\vec{a}.\hat{i})\hat{i}\ +\ (\vec{a}.\hat{j})\hat{j}\ +\ (\vec{a}.\hat{k})\hat{k}].\vec{a}\) will be equal to
Answer (Detailed Solution Below)
Scalar or Dot Product Question 12 Detailed Solution
Download Solution PDFConcept:
Dot Product: it is also called the inner product or scalar product
Let the two vectors are \(\rm \vec a\) and \(\rm \vec b\)
Dot Product of two vectors is given by: \(\rm \vec a.{\rm{\;}}\vec b\) = |a||b| cos θ
Where |\(\rm \vec a\)| = Magnitudes of vectors a, |\(\rm \vec b\)| = Magnitudes of vectors b and θ is the angle between a and b
Formulas of Dot Product:
\(\rm \vec i.\vec i = \vec j.\vec j = \vec k.\vec k = 1\)
\(\rm \vec i.\vec j = \vec j.\vec i = \vec i.\vec k = \vec k.\vec i =\vec j.\vec k= \vec k.\vec j = 0\)
Calculation:
Let \(\vec{a}\ =\ x̂{i}\ +\ ŷ{j}\ +\ ẑ{k}\)
\(\Rightarrow\ |a|\ =\ \sqrt{x^2\ +\ y^2\ +\ z^2}\)
\(\vec{a}.̂{i}\ =\ (x̂{i}\ +\ ŷ{j}\ +\ ẑ{k}).̂{i}\ =\ x\)
Similarly, \(\vec{a}.̂{j}\ =\ y, \ \vec{a}.̂{k}\ =\ z\)
Therefore \([(\vec{a}.̂{i})̂{i}\ +\ (\vec{a}.̂{j})̂{j}\ +\ (\vec{a}.̂{k})̂{k}]\)
= xî + yĵ + zk̂
Hence, required value of
\([(\vec{a}.\hat{i})\hat{i}\ +\ (\vec{a}.\hat{j})\hat{j}\ +\ (\vec{a}.\hat{k})\hat{k}].\vec{a}\)
= (xî + yĵ + zk̂ ).(xî + yĵ + zk̂ )
= x2 + y2 + z2 = |a|2
Find the projection of the vector \(\vec a = 2\hat i + 3\hat j + 2\hat k\) on the vector \(\vec b = \vec i + 2\vec j + \hat k\) ?
Answer (Detailed Solution Below)
Scalar or Dot Product Question 13 Detailed Solution
Download Solution PDFCONCEPT:
- Projection of a vector \(\vec a\) on other vector \(\vec b\) is given by: \(\vec a \cdot \hat b = \frac{\vec a \cdot \vec b}{|\vec b|}\)
CALCULATION:
Given: \(\vec a = 2\hat i + 3\hat j + 2\hat k\) and \(\vec b = \vec i + 2\vec j + \hat k\)
Here, we have to find the projection of a vector \(\vec a\) on other vector \(\vec b\) is given by: \(\vec a \cdot \hat b = \frac{\vec a \cdot \vec b}{|\vec b|}\)
⇒ \(\vec a \cdot \vec b = 2 + 6 + 2 = 10 \ and \ |\vec b| = \sqrt {6}\)
⇒ \(\vec a \cdot \hat b = \frac{10}{\sqrt {6}} = \frac{5\sqrt6}{3}\)
Hence, option 3 is correct.
If \(\vec a \:and\: \vec b\) are two vectors such that \(|\vec a + \vec b|= |\vec a - \vec b|=4,\) then which one of the following is correct?
Answer (Detailed Solution Below)
Scalar or Dot Product Question 14 Detailed Solution
Download Solution PDFCONCEPT:
The scalar product of two vectors \(\vec a \ and \ \vec b \)is given by \(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right|\cos θ \)
If the vectors \(\vec a \ and \ \vec b \) are perpendicular then \(\vec a \cdot \;\vec b = 0\)
CALCULATION:
Given: \(\vec a \:and\: \vec b\) are two vectors such that \(|\vec a + \vec b|= |\vec a - \vec b|=4\)
⇒ \(|\vec a + \vec b|^2= |\vec a - \vec b|^2\)
⇒ \((\vec a + \vec b) \cdot (\vec a + \vec b) = (\vec a - \vec b) \cdot (\vec a - \vec b)\)
⇒ \(|\vec a|^2 + \vec a \cdot \vec b + \vec b \cdot \vec a + |\vec b|^2 = |\vec a|^2 - \vec a \cdot \vec b - \vec b \cdot \vec a + |\vec b|^2\)
∵ \(\vec a \cdot \vec b = \vec b \cdot \vec a\)
⇒ \(|\vec a|^2 + 2\vec a \cdot \vec b + |\vec b|^2 = |\vec a|^2 - 2\vec a \cdot \vec b + |\vec b|^2\)
⇒ \(4\vec a \cdot \vec b = 0\)
⇒ \(\vec a \cdot \vec b = 0\)
So, \(\vec a \) must be perpendicular to \(\vec b.\)
Hence, correct option is 3.
If \(\rm(\vec {a} + \vec{b})\) is perpendicular to \(\rm\vec {a}\) and magnitude of \(\rm\vec {b}\) is twice that of \(\rm\vec {a}\), then what is the value of \(\rm(4\vec {a} + \vec{b})\cdot \vec{b}\) equal to?
Answer (Detailed Solution Below)
Scalar or Dot Product Question 15 Detailed Solution
Download Solution PDFConcept:
If \(\rm(\vec {a} + \vec{b})\) is perpendicular to \(\rm\vec {a}\), then
\(\rm(\vec {a} + \vec{b})\).\(\vec {a}\) = 0
Calculation:
\(|\vec{a}|^{2}\) + \(\rm \vec {a}.\rm \vec {b}\) = 0
Given: \(\rm |\vec{b}| = 2\times |\vec{a}|\)
So, we can write
\(\rm \frac{|\vec{b}|^{2}}{4}\) + \(\rm \vec {a}.\rm \vec {b}\) = 0
\(\rm \vec {a}.\rm \vec {b}\) = - \(\rm \frac{|\vec{b}|^{2}}{4}\) -----(1)
To find: \(\rm (4\vec {a} + \vec{b})\cdot \vec{b}\)
\(\rm (4\vec {a} + \vec{b})\cdot \vec{b}\) = 4\(\rm \vec {a}.\rm \vec {b}\) + \(\rm |\vec{b}|^{2}\) ----(2)
From equations (1) & (2) we can write,
\(\rm (4\vec {a} + \vec{b})\cdot \vec{b}\) = -\(\rm |\vec{b}|^{2}\) + \(\rm |\vec{b}|^{2}\) = 0
∴ The value of \(\rm(4\vec {a} + \vec{b})\cdot \vec{b}\) equal to 0.