Scalar or Dot Product MCQ Quiz - Objective Question with Answer for Scalar or Dot Product - Download Free PDF

Last updated on Jun 30, 2025

Latest Scalar or Dot Product MCQ Objective Questions

Scalar or Dot Product Question 1:

A line makes angles α, β and γ with the positive directions of the coordinate axes. If , then what is \(\vec{a}.\vec{b}\) equal to?

  1. -2
  2. -1
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Scalar or Dot Product Question 1 Detailed Solution

Calculation:

Given,

\( \cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1 \)

Using the identity \( \cos^2(x) = 1 - \sin^2(x) \), we substitute:

\( (1 - \sin^2(\alpha)) + (1 - \sin^2(\beta)) + (1 - \sin^2(\gamma)) = 1 \)

Simplifying the equation:

\( 3 - (\sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma)) = 1 \)

Rearrange to isolate the sine terms:

\( \sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma) = 2 \)

Now, calculate the dot product:

\( \vec{a} \cdot \vec{b} = \sin^2(\alpha) + \sin^2(\beta) + \sin^2(\gamma) = 2 \)

∴ The value of \( \vec{a} \cdot \vec{b} \)is 2.

Hence, the correct answer is Option 4.

Scalar or Dot Product Question 2:

The vector \(\rm \vec{a}=-\hat{i}+2 \hat{j}+\hat{k}\) is rotated through a right angle, passing through the y-axis in its way and the resulting vector is \(\overrightarrow{\mathrm{b}}\). Then the projection of \(\rm 3 \vec{a}+\sqrt{2 \vec{b}}\) on \(\overrightarrow{\mathrm{c}}=5 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\) is

  1. 3√2
  2. 1
  3. √6
  4. 2√3

Answer (Detailed Solution Below)

Option 1 : 3√2

Scalar or Dot Product Question 2 Detailed Solution

Calculation: 

\(\overrightarrow{\mathrm{b}}=\lambda \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{a}} \times \hat{\mathrm{j}})\)

⇒ \(\overrightarrow{\mathrm{b}}=\lambda(-2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)

⇒ \(|\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}| \quad \therefore \sqrt{6}=\sqrt{12}|\lambda| \Rightarrow \lambda= \pm \frac{1}{\sqrt{2}}\)

\(\left(\lambda=\frac{1}{\sqrt{2}} \text { rejected } \because \overrightarrow{\mathrm{b}} \text { makes acute angle with y axis }\right)\)

⇒ \(\overrightarrow{\mathrm{b}}=-\sqrt{2}(-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)

⇒ \(\frac{(3 \vec{a}+\sqrt{2 b}) \cdot \vec{c}}{|\vec{c}|}=3 \sqrt{2}\)

Hence, the correct answer is Option 1.

Scalar or Dot Product Question 3:

Let θ be the angle between two unit vectors \(\rm \vec a\ and\ \vec b. \ if\ \vec a+2\vec b\) is perpendicular to \(\rm 5\vec a-4\vec b\) then what is cos θ + cos 2θ equal to?

  1. 0
  2. 1/2
  3. 1
  4. \(\frac{\sqrt3+1}{2}\)

Answer (Detailed Solution Below)

Option 1 : 0

Scalar or Dot Product Question 3 Detailed Solution

Explanation:

Given:

\(⃗ a+2⃗ b\) and \(\rm 5⃗ a-4⃗ b\) are perpendicular vectors.

⇒ \((⃗ a+2⃗ b).\)\((\rm 5⃗ a-4⃗ b)\) = 0

⇒ \(5|⃗ a|^2 -4⃗ a.⃗ b + 10⃗ a . ⃗ b - 8(⃗ b)^2=0\)

⇒ \(5× 1 + 6⃗ a.⃗ b-8 =0\)

Now \(\vec a, \vec b\) are unit vectors

⇒ \(6 |\vec a||\vec b| Cosθ = 3\)

⇒ 1.1 cosθ =1/2

Cosθ = 1/2 

Now

cos2 θ = Cos2θ -1

= 2× 1/4 -1

\(-\frac{1}{2}\)

Now, 

cosθ + cos2θ = 1/2 -1/2 =0

∴The Correct answer is Option a

Scalar or Dot Product Question 4:

If \(\left| {{\rm{\vec a}} + {\rm{\vec b}}} \right| = \left| {{\rm{\vec a}} - {\rm{\vec b}}} \right|\), then which one of the following is correct?

  1. \(\left| {{\rm{\vec a}}} \right| = \left| {{\rm{\vec b}}} \right|\)
  2. \({\rm{\vec a}}\) is parallel to \({\rm{\vec b}}\)
  3. \({\rm{\vec a}}\) is perpendicular to \({\rm{\vec b}}\)
  4. \({\rm{\vec a}}\)is a unit vector.
  5. \({\rm{\vec b}}\) is unit vector.

Answer (Detailed Solution Below)

Option 3 : \({\rm{\vec a}}\) is perpendicular to \({\rm{\vec b}}\)

Scalar or Dot Product Question 4 Detailed Solution

Concept:

\(\begin{aligned} |\vec{a}-\vec{b}|^{2} &=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b} \\ &=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}-4 \vec{a} \cdot \bar{b} \\ &=|\vec{a}+\vec{b}|^{2}-4 \vec{a} \cdot \vec{b} \end{aligned}\)

\({\rm{\vec a}}.{\rm{\vec b}}= |{\rm{\vec a}}|.|{\rm{\vec b}}|\cos \theta\)

Vector a is perpendicular to b if \({\rm{\vec a}}.{\rm{\vec b}}= 0\)

Calculation:

\(\left| {{\rm{\vec a}} + {\rm{\vec b}}} \right| = \left| {{\rm{\vec a}} - {\rm{\vec b}}} \right|\)

Squaring both sides,

\(\begin{aligned} |\vec{a}-\vec{b}|^{2} &=|\vec{a}+\vec{b}|^{2}\end{aligned}\)

Now we have,

\(\begin{aligned} |\vec{a}-\vec{b}|^{2} &=|\vec{a}+\vec{b}|^{2}-4 \vec{a} \cdot \vec{b} =|\vec{a}+\vec{b}|^{2}\end{aligned}\\\Rightarrow-4 \vec{a} \cdot \vec{b}=0 \\\Rightarrow \vec{a} \cdot \vec{b} =0\)

∴  Vector a is perpendicular to b

Hence, option (3) is correct.

Scalar or Dot Product Question 5:

For the vectors \(\rm \vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}\)\(\rm (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=\) ________.

  1. 11
  2. -11
  3. 5
  4. -5

Answer (Detailed Solution Below)

Option 2 : -11

Scalar or Dot Product Question 5 Detailed Solution

Calculation

Given: \(\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}\) and \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}\) 

\((\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b}\)

 

⇒ \((\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b} = |\mathbf{a}|^2 - |\mathbf{b}|^2\)

\(|\mathbf{a}|^2 = (1)^2 + (1)^2 + (1)^2 = 1 + 1 + 1 = 3\)

\(|\mathbf{b}|^2 = (1)^2 + (2)^2 + (3)^2 = 1 + 4 + 9 = 14\)

\(|\mathbf{a}|^2 - |\mathbf{b}|^2 = 3 - 14 = -11\)

⇒ \((\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = -11\).

Hence option 2 is correct.

Top Scalar or Dot Product MCQ Objective Questions

If \(\hat{a}, \hat{b}, \hat{c}\), are unit vectors and \(\hat{a}+\hat{b}+\hat{c}=0\) then the value of of \(\hat{a}\cdot \hat{b}+\hat{b}\cdot \hat{c}+\hat{c}\cdot \hat{a}\) is :

  1. -3/2
  2. 0
  3. 2/3
  4. 1

Answer (Detailed Solution Below)

Option 1 : -3/2

Scalar or Dot Product Question 6 Detailed Solution

Download Solution PDF

Concept:

Dot Product: it is also called the inner product or scalar product

Let the two vectors are \(\rm \vec a\) and \(\rm \vec b\)

Dot Product of two vectors is given by:  \(\rm \vec a.{\rm{\;}}\vec b\) = |a||b| cos θ

Where |\(\rm \vec a\)| = Magnitudes of vectors a, |\(\rm \vec b\)| = Magnitudes of vectors b and θ is the angle between a and b

Formulas of Dot Product:

 \(\rm \vec i.\vec i = \vec j.\vec j = \vec k.\vec k = 1\)

\(\rm \vec i.\vec j = \vec j.\vec i = \vec i.\vec k = \vec k.\vec i =\vec j.\vec k= \vec k.\vec j = 0\)

Calculation:

Given that,

(â + b̂ + ĉ) = 0    ----(1)

We know that,

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

⇒ (â + b̂ + ĉ)2 = â ⋅ â + b̂ ⋅ b̂ + ĉ ⋅ ĉ + 2(â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) 

From equation (1), we get

⇒ (1 + 1 + 1) + 2 (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = 0

∴ (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = - 3/2        

If \(\rm \vec{a}\) and \(\rm \vec{b}\) are mutually perpendicular unit vectors, then \(\rm (3\vec{a}+2\vec{b})\cdot (5\vec{a}-6\vec{b})=\)

  1. 5
  2. 3
  3. 6
  4. 12

Answer (Detailed Solution Below)

Option 2 : 3

Scalar or Dot Product Question 7 Detailed Solution

Download Solution PDF

Concept:

If  \(\rm \vec{a}\) and \(\rm \vec{b}\) are mutually perpendicular unit vectors \(\rm \vec{a}.\vec{b} = 0= ​​\)\(\rm \vec{b}.\vec{a} = 0\)

\(\rm \vec{a}.\vec{a} = |\vec{a}|^2\),  \(\rm \vec{b}.\vec{b} = |\vec{b}|^2\)

 

Calculations:

Consider, \(\rm (3\vec{a}+2\vec{b})\cdot (5\vec{a}-6\vec{b})\)

Given  \(\rm \vec{a}\) and \(\rm \vec{b}\) are mutually perpendicular unit vectors.

So,  \(\rm \vec{a}.\vec{b} = 0= ​​\)\(\rm \vec{b}.\vec{a} = 0\)

And   \(\rm \vec{a}\) and \(\rm \vec{b}\) are unit vectors

So, \(\rm |\vec{a}|= |\vec{b}| = 1\)

\(\rm (3\vec{a}+2\vec{b})\cdot (5\vec{a}-6\vec{b})\)

\(= \rm 3\vec{a}\cdot 5\vec{a}+2\vec{b}\cdot 5\vec{a} -3\vec{a}\cdot6\vec{b}-2\vec{b}\cdot 6\vec{b}\)

\(\rm 15|\vec {a}|^2 - 12 |\vec {b}|^2\)

= 15 - 12 

= 3

The sum of two vectors \(\rm \vec a\) and \(\rm \vec b\) is a vector \(\rm \vec c\) such that \(\rm \left|\vec a \right|=\left|\vec b \right|=\left|\vec c \right|=2\). Then, the magnitude of \(\rm \vec a -\vec b\) is equal to:

  1. \(2\sqrt{3}\)
  2. 2
  3. \(\sqrt{3}\)
  4. 0

Answer (Detailed Solution Below)

Option 1 : \(2\sqrt{3}\)

Scalar or Dot Product Question 8 Detailed Solution

Download Solution PDF

Concept:

Dot Product of two vectors \(\rm \vec A\) and \(\rm \vec B\) is defined as \(\rm \vec A.\vec B=\rm \left|\vec A\right|\rm \left|\vec B\right|\cos \theta\), where \(\rm \left|\vec A\right|\) is the magnitude of vector \(\rm \vec A\).

\(\rm \vec A.\vec A=\rm \left|\vec A\right|^2\).

Calculation:

We are given that "sum of two vectors \(\rm \vec a\) and \(\rm \vec b\) is a vector \(\rm \vec c\)".

⇒ \(\rm \vec a +\vec b=\vec c\)

Taking dot product of both sides with themselves, the magnitudes will still be equal:

⇒ \(\rm \left(\vec a +\vec b\right).\left(\vec a +\vec b\right)=\left(\vec c\right).\left(\vec c\right)\)

⇒ \(\rm \left|\vec a\right|^2+\left|\vec b\right|^2+2\vec a.\vec b=\left|\vec c\right|^2\)

Since \(\rm \left|\vec a \right|=\left|\vec b \right|=\left|\vec c \right|=2\), we get:

⇒ \(\rm 2^2+2^2+2\vec a.\vec b=2^2\)

⇒ \(\rm 4+4+2\vec a.\vec b=4\)

⇒ \(\rm 2\vec a.\vec b=-4\)

Now, \(\rm \rm \left|\vec a-\vec b\right|^2=\left(\vec a -\vec b\right).\left(\vec a -\vec b\right)\)

\(\rm \left|\vec a\right|^2+\left|\vec b\right|^2-2\vec a.\vec b\)

= 4 + 4 - (-4)

= 12

⇒ \(\rm \rm \left|\vec a-\vec b\right|=\sqrt{12}=2\sqrt3\).

Find the angle between the vectors \(\vec a = \hat i + \hat j - \hat k \ and \ \vec b =\hat i - \hat j - \hat k\)

  1. \(\rm cos^{-1}\frac{1}{\sqrt{2}}\)
  2. \(\rm cos^{-1}\frac{1}{2}\)
  3. \(\rm cos^{-1}\frac{1}{3}\)
  4. \(\rm cos^{-1}\frac{1}{\sqrt{3}}\)

Answer (Detailed Solution Below)

Option 3 : \(\rm cos^{-1}\frac{1}{3}\)

Scalar or Dot Product Question 9 Detailed Solution

Download Solution PDF

Concept:

If \(\rm \vec{a} \ and \ \vec b\) are two vectors then \(\rm \vec{a}.\vec{b}=|\vec{a}||\vec{b}|cosθ\)

Note: If vectors \(\rm \vec{a} \ and \ \vec b\) are perpendicular to each other then \(\rm \vec{a}.\vec{b}=0\)

Calculation:

Given: \(\vec a = \hat i + \hat j - \hat k \ and \ \vec b =\hat i - \hat j - \hat k\)

Let θ be the angle between the vector \(\rm \vec{a} \ and \ \vec b\)

⇒ \(|\vec a| = \sqrt 3 \ and \ |\vec b| = \sqrt 3\)

We know that, 

\(\rm \vec{a}.\vec{b}=|\vec{a}||\vec{b}|cosθ\)

⇒ \((\hat i + \hat j - \hat k) \cdot (\hat i - \hat j - \hat k) = \sqrt 3 \times \sqrt 3 \times cos θ \)

⇒ 1 = 3 cos θ 

⇒ \(\rm cos\ θ=\frac{1}{3}\) 

⇒ \(\rm θ=cos^{-1}\frac{1}{3}\)

Hence, option 3 is correct.

Find \(|\vec x|\) if \((\vec x - \vec a) \cdot (\vec x + \vec a) = 12\) and \(\vec a\) is a unit vector ?

  1. \(2\sqrt 3\)
  2. \(\sqrt {13}\)
  3. 3
  4. None of these

Answer (Detailed Solution Below)

Option 2 : \(\sqrt {13}\)

Scalar or Dot Product Question 10 Detailed Solution

Download Solution PDF

CONCEPT:

  • \(\vec a \cdot \vec a = |\vec a|^2\)
  • \(\vec a \cdot \vec b = \vec b \cdot \vec a\)
  • If \(\vec a\) is a unit vector then \(|\vec a| = 1\)

CALCULATION:

Given: \((\vec x - \vec a) \cdot (\vec x + \vec a) = 12\) and \(\vec a\) is a unit vector

⇒ \((\vec x - \vec a) \cdot (\vec x + \vec a) = |\vec x|^2 + \vec x \cdot \vec a - \vec a \cdot \vec x - |\vec a|^2 = 12\)

As we know that, \(\vec a \cdot \vec b = \vec b \cdot \vec a\)

⇒ \((\vec x - \vec a) \cdot (\vec x + \vec a) = |\vec x|^2 - |\vec a|^2 = 12\)

As we know that, if \(\vec a\) is a unit vector then \(|\vec a| = 1\)

⇒ \(|\vec x|^2 = 13 \Rightarrow |\vec x| = \sqrt {13}\)

Hence, correct option is 2.

If \(\vec a, \vec b\) are vectors such that \(|\vec a + \vec b| = \sqrt {29}\) and \(\vec a \times (2\hat i + 3\hat j + 4\hat k) = (2\hat i + 3\hat j + 4\hat k) \times \vec b\) then possible value of \((\vec a + \vec b).(-7\hat i + 2\hat j + 3\hat k)\) is

  1. 0
  2. 3
  3. 4
  4. 8

Answer (Detailed Solution Below)

Option 3 : 4

Scalar or Dot Product Question 11 Detailed Solution

Download Solution PDF

Concept:

  • The cross product of vector to itself = 0
  • The cross product of collinear vectors = 0
  • The dot product of collinear vectors = Product of their Magnitudes
  • \(\rm \vec a \times \vec b=-\vec b \times \vec a\)
  • For dot product \(\rm (\vec P + \vec Q) \cdot \vec R = (\vec P\cdot \vec R) +(\vec Q\cdot \vec R)\)
  • For cross product \(\rm (\vec P + \vec Q) ×\vec R = (\vec P×\vec R) + (\vec Q×\vec R) \) 
  • The unit vector in the direction of a \(\rm \vec P= \hat P={\vec P\over\left|\vec P\right|}\) 
  • A vector \(\rm \vec X\) in direction of \(\rm \vec P\) = (Magnitude of \(\rm \vec X\)) × \(\rm \hat P\)

 

Calculation:

Given:

\(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) = (2\hat i + 3\hat j + 4\hat k) × \vec b\)

⇒ \(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) - (2\hat i + 3\hat j + 4\hat k) × \vec b=0\)

⇒ \(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) + \vec b × (2\hat i + 3\hat j + 4\hat k) =0\)

⇒ \(\boldsymbol{\rm(\vec a + \vec b) × (2\hat i + 3\hat j + 4\hat k) =0}\)

It means the \(\rm\vec a + \vec b\) and \(\rm2\hat i + 3\hat j + 4\hat k\) are collinear vectors.

∴ \(\rm\vec a + \vec b = \left|\vec a + \vec b\right| × {2\hat i + 3\hat j + 4\hat k\over \left|2\hat i + 3\hat j + 4\hat k\right|}\) 

⇒ \(\rm\vec a + \vec b = \sqrt{29}× {2\hat i + 3\hat j + 4\hat k\over\sqrt{29}}\) 

⇒ \(\boldsymbol{\rm\vec a + \vec b = 2\hat i + 3\hat j + 4\hat k}\)

\(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(2\hat i + 3\hat j + 4\hat k\right)\cdot\left(-7\hat i + 2\hat j + 3\hat k\right)\)

⇒ \(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(2\times(-7) + 3\times2 + 4\times3\right)\) 

⇒ \(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(-14 +6 + 12\right)\) 

⇒ \(\boldsymbol{\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = 4}\)

Value of  \([(\vec{a}.\hat{i})\hat{i}\ +\ (\vec{a}.\hat{j})\hat{j}\ +\ (\vec{a}.\hat{k})\hat{k}].\vec{a}\)  will be equal to

  1. 0
  2. |a|2
  3. 2|a|2
  4. 3|a|2

Answer (Detailed Solution Below)

Option 2 : |a|2

Scalar or Dot Product Question 12 Detailed Solution

Download Solution PDF

Concept:

Dot Product: it is also called the inner product or scalar product

Let the two vectors are \(\rm \vec a\) and \(\rm \vec b\)

Dot Product of two vectors is given by:  \(\rm \vec a.{\rm{\;}}\vec b\) = |a||b| cos θ

Where |\(\rm \vec a\)| = Magnitudes of vectors a, |\(\rm \vec b\)| = Magnitudes of vectors b and θ is the angle between a and b

Formulas of Dot Product:

 \(\rm \vec i.\vec i = \vec j.\vec j = \vec k.\vec k = 1\)

\(\rm \vec i.\vec j = \vec j.\vec i = \vec i.\vec k = \vec k.\vec i =\vec j.\vec k= \vec k.\vec j = 0\)

Calculation:

Let \(\vec{a}\ =\ x̂{i}\ +\ ŷ{j}\ +\ ẑ{k}\)

\(\Rightarrow\ |a|\ =\ \sqrt{x^2\ +\ y^2\ +\ z^2}\)

\(\vec{a}.̂{i}\ =\ (x̂{i}\ +\ ŷ{j}\ +\ ẑ{k}).̂{i}\ =\ x\)

Similarly, \(\vec{a}.̂{j}\ =\ y, \ \vec{a}.̂{k}\ =\ z\)

Therefore \([(\vec{a}.̂{i})̂{i}\ +\ (\vec{a}.̂{j})̂{j}\ +\ (\vec{a}.̂{k})̂{k}]\)

= xî + yĵ + zk̂ 

Hence, required value of

 \([(\vec{a}.\hat{i})\hat{i}\ +\ (\vec{a}.\hat{j})\hat{j}\ +\ (\vec{a}.\hat{k})\hat{k}].\vec{a}\)

= (xî + yĵ + zk̂ ).(xî + yĵ + zk̂ )

= x2 + y2 + z2 = |a|2

Find the projection of the vector \(\vec a = 2\hat i + 3\hat j + 2\hat k\) on the vector \(\vec b = \vec i + 2\vec j + \hat k\) ?

  1. \(\frac{2\sqrt6}{3}\)
  2. \(\frac{4\sqrt6}{3}\)
  3. \(\frac{5\sqrt6}{3}\)
  4. None of these

Answer (Detailed Solution Below)

Option 3 : \(\frac{5\sqrt6}{3}\)

Scalar or Dot Product Question 13 Detailed Solution

Download Solution PDF

CONCEPT:

  • Projection of a vector \(\vec a\) on other vector \(\vec b\) is given by: \(\vec a \cdot \hat b = \frac{\vec a \cdot \vec b}{|\vec b|}\)

CALCULATION:

Given: \(\vec a = 2\hat i + 3\hat j + 2\hat k\) and \(\vec b = \vec i + 2\vec j + \hat k\)

Here, we have to find the projection of a vector \(\vec a\) on other vector \(\vec b\) is given by: \(\vec a \cdot \hat b = \frac{\vec a \cdot \vec b}{|\vec b|}\)

⇒ \(\vec a \cdot \vec b = 2 + 6 + 2 = 10 \ and \ |\vec b| = \sqrt {6}\)

⇒ \(\vec a \cdot \hat b = \frac{10}{\sqrt {6}} = \frac{5\sqrt6}{3}\)

Hence, option 3 is correct.

If \(\vec a \:and\: \vec b\) are two vectors such that \(|\vec a + \vec b|= |\vec a - \vec b|=4,\) then which one of the following is correct?

  1. \(\vec a \:and\: \vec b\) must be unit vectors.
  2. \(\vec a\) must be parallel to \(\vec b.\)
  3. \(\vec a\) must be perpendicular to \(\vec b.\)
  4. \(\vec a\) must be equal to \(\vec b.\)

Answer (Detailed Solution Below)

Option 3 : \(\vec a\) must be perpendicular to \(\vec b.\)

Scalar or Dot Product Question 14 Detailed Solution

Download Solution PDF

CONCEPT:

The scalar product of two vectors \(\vec a \ and \ \vec b \)is given by \(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right|\cos θ \)

If the vectors \(\vec a \ and \ \vec b \) are perpendicular then \(\vec a \cdot \;\vec b = 0\)

CALCULATION:

Given: \(\vec a \:and\: \vec b\) are two vectors such that \(|\vec a + \vec b|= |\vec a - \vec b|=4\)

⇒ \(|\vec a + \vec b|^2= |\vec a - \vec b|^2\)

⇒ \((\vec a + \vec b) \cdot (\vec a + \vec b) = (\vec a - \vec b) \cdot (\vec a - \vec b)\)

⇒ \(|\vec a|^2 + \vec a \cdot \vec b + \vec b \cdot \vec a + |\vec b|^2 = |\vec a|^2 - \vec a \cdot \vec b - \vec b \cdot \vec a + |\vec b|^2\)

∵ \(\vec a \cdot \vec b = \vec b \cdot \vec a\)

⇒ \(|\vec a|^2 + 2\vec a \cdot \vec b + |\vec b|^2 = |\vec a|^2 - 2\vec a \cdot \vec b + |\vec b|^2\)

⇒ \(4\vec a \cdot \vec b = 0\)

⇒ \(\vec a \cdot \vec b = 0\)

So, \(\vec a \) must be perpendicular to \(\vec b.\)

Hence, correct option is 3.

If \(\rm(\vec {a} + \vec{b})\) is perpendicular to \(\rm\vec {a}\) and magnitude of \(\rm\vec {b}\) is twice that of \(\rm\vec {a}\), then what is the value of \(\rm(4\vec {a} + \vec{b})\cdot \vec{b}\) equal to?

  1. 0
  2. 1
  3. \(8|\vec{a}|^2\)
  4. \(8|\vec{b}|^2\)

Answer (Detailed Solution Below)

Option 1 : 0

Scalar or Dot Product Question 15 Detailed Solution

Download Solution PDF

Concept:

If \(\rm(\vec {a} + \vec{b})\) is perpendicular to \(\rm\vec {a}\), then 

\(\rm(\vec {a} + \vec{b})\).\(\vec {a}\) = 0

Calculation:

\(|\vec{a}|^{2}\) + \(\rm \vec {a}.\rm \vec {b}\) = 0

Given: \(\rm |\vec{b}| = 2\times |\vec{a}|\)

So, we can write

\(\rm \frac{|\vec{b}|^{2}}{4}\) +  \(\rm \vec {a}.\rm \vec {b}\) = 0

\(\rm \vec {a}.\rm \vec {b}\) = - \(\rm \frac{|\vec{b}|^{2}}{4}\)      -----(1)

To find: \(\rm (4\vec {a} + \vec{b})\cdot \vec{b}\)

\(\rm (4\vec {a} + \vec{b})\cdot \vec{b}\) = 4\(\rm \vec {a}.\rm \vec {b}\) + \(\rm |\vec{b}|^{2}\)      ----(2)

From equations (1) & (2) we can write,

\(\rm (4\vec {a} + \vec{b})\cdot \vec{b}\) = -​\(\rm |\vec{b}|^{2}\) + \(\rm |\vec{b}|^{2}\) = 0​​

∴ The value of \(\rm(4\vec {a} + \vec{b})\cdot \vec{b}\) equal to 0.
Get Free Access Now
Hot Links: teen patti gold old version teen patti apk teen patti star login