Properties of Fourier Transform MCQ Quiz - Objective Question with Answer for Properties of Fourier Transform - Download Free PDF
Last updated on May 16, 2025
Latest Properties of Fourier Transform MCQ Objective Questions
Properties of Fourier Transform Question 1:
The Laplace transform of x(t) is \(\sqrt{\frac{2}{s-3}}\). Then Laplace transform of e−6tx(t) is :
Answer (Detailed Solution Below)
Properties of Fourier Transform Question 1 Detailed Solution
The correct option is 1
Concept:
If the Laplace transform of a function \( x(t) \) is known, then the Laplace transform of \( e^{-at}x(t) \) can be obtained using the time-shifting property of the Laplace transform.
This property states that:
\( \mathcal{L}\{e^{-at}x(t)\} = X(s + a) \), where \( X(s) = \mathcal{L}\{x(t)\} \)
Given:
\( \mathcal{L}\{x(t)\} = \sqrt{\frac{2}{s - 3}} \)
Calculation:
We are asked to find the Laplace transform of \( e^{-6t}x(t) \).
Using the time-shifting property:
\( \mathcal{L}\{e^{-6t}x(t)\} = \sqrt{\frac{2}{(s + 6) - 3}} = \sqrt{\frac{2}{s + 3}} \)
Properties of Fourier Transform Question 2:
Fourier transform of the above signal x(t) = e-a|t| is:
Answer (Detailed Solution Below)
Properties of Fourier Transform Question 2 Detailed Solution
Explanation:
The Fourier transform of the signal \(x(t) = e^{-a|t|}\) can be calculated as follows:
Step 1: Definition of Fourier Transform
The Fourier transform of a function \(x(t)\) is defined as:
\[ X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \]
For the given signal \(x(t) = e^{-a|t|}\), we need to consider the absolute value function. Therefore, the signal can be written as:
\[ x(t) = \begin{cases} e^{at} & \text{for } t < 0 \\ e^{-at} & \text{for } t \ge 0 \end{cases} \]
Step 2: Split the Integral
We can split the integral into two parts: one for \(t < 0\) and one for \(t \ge 0\):
\[ X(j\omega) = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt \]
Simplifying the exponents inside the integrals, we get:
\[ X(j\omega) = \int_{-\infty}^{0} e^{(a - j\omega)t} dt + \int_{0}^{\infty} e^{-(a + j\omega)t} dt \]
Step 3: Evaluate the Integrals
Let's evaluate each integral separately.
For the first integral \( \int_{-\infty}^{0} e^{(a - j\omega)t} dt \):
\[ \int_{-\infty}^{0} e^{(a - j\omega)t} dt = \left[ \frac{e^{(a - j\omega)t}}{a - j\omega} \right]_{-\infty}^{0} \]
Evaluating the limits:
\[ \left[ \frac{e^{(a - j\omega)t}}{a - j\omega} \right]_{-\infty}^{0} = \frac{1}{a - j\omega} - \lim_{t \to -\infty} \frac{e^{(a - j\omega)t}}{a - j\omega} \]
Since \(a > 0\), \(e^{(a - j\omega)t}\) approaches 0 as \(t\) approaches \(-\infty\):
\[ \frac{1}{a - j\omega} - 0 = \frac{1}{a - j\omega} \]
For the second integral \( \int_{0}^{\infty} e^{-(a + j\omega)t} dt \):
\[ \int_{0}^{\infty} e^{-(a + j\omega)t} dt = \left[ \frac{-e^{-(a + j\omega)t}}{a + j\omega} \right]_{0}^{\infty} \]
Evaluating the limits:
\[ \left[ \frac{-e^{-(a + j\omega)t}}{a + j\omega} \right]_{0}^{\infty} = 0 - \left( -\frac{1}{a + j\omega} \right) = \frac{1}{a + j\omega} \]
Step 4: Add the Results
Now, combining both integrals, we get:
\[ X(j\omega) = \frac{1}{a - j\omega} + \frac{1}{a + j\omega} \]
To simplify, find a common denominator:
\[ X(j\omega) = \frac{a + j\omega + a - j\omega}{(a - j\omega)(a + j\omega)} = \frac{2a}{a^2 + \omega^2} \]
Therefore, the Fourier transform of \(x(t) = e^{-a|t|}\) is:
\[ X(j\omega) = \frac{2a}{a^2 + \omega^2} \]
Important Information:
To further understand the analysis, let’s evaluate the other options:
Option 1: \(X(j\omega) = \frac{2a}{a+\omega}\)
This option is incorrect because the denominator should be \(a^2 + \omega^2\), not \(a + \omega\).
Option 3: \(X(j\omega) = \frac{a}{a - j\omega}\)
This option is incorrect because it does not account for the full expression obtained from the Fourier transform, and it lacks the correct form of the denominator.
Option 4: \(X(j\omega) = \frac{2a}{a + j\omega}\)
This option is incorrect because it only partially matches one of the terms derived from the Fourier transform calculation and does not include the complete expression.
Conclusion:
Understanding the Fourier transform process and carefully evaluating each integral's limits and results are essential for correctly identifying the transform of a given signal. In this case, the correct Fourier transform of \(x(t) = e^{-a|t|}\) is \(X(j\omega) = \frac{2a}{a^2 + \omega^2}\), making Option 2 the correct choice.
Properties of Fourier Transform Question 3:
Fourier transform of \(\rm t e^{t-t^2/2}\) is
Answer (Detailed Solution Below)
Properties of Fourier Transform Question 3 Detailed Solution
Concept:
Fourier Transform:
- The Fourier transform of a function converts it from time domain to frequency domain.
- If f(t) is a time-domain function, its Fourier Transform is defined as:
- \( F(p) = \int_{-\infty}^{\infty} f(t)e^{-ipt} dt \)
- For Gaussian functions like \(( e^{-t^2/2} )\) , their Fourier transform is also Gaussian.
- The Fourier transform of \(e^{-t^2/2}\) is \(\sqrt{2\pi} e^{-p^2/2} \).
- Multiplying by t in time domain corresponds to taking derivative with respect to p in frequency domain:
- \( \mathcal{F}[t f(t)] = i \frac{d}{dp}F(p) \)
Calculation:
Given,
Let f(t) = t e−t²⁄2
Let F(p) = Fourier transform of e−t²⁄2 = e−p²⁄2
⇒ Fourier transform of t f(t) = i × d/dp (e−p²⁄2)
⇒ = i × (−p e−p²⁄2) = −i p e−p²⁄2
⇒ Now t e−t²⁄2 = f(t),
so full FT is i × d/dp (F(p))
⇒ Add F(p) itself:
Final result = (1 + i p) e−(p² − 1)/2
∴ The correct Fourier transform is: \(\rm (1-ip)e^{-ip}e^{-(p^2-1)/2}\)
Properties of Fourier Transform Question 4:
Which type of property is shown by the following function.
L{K f(t)} = K F(s)
Answer (Detailed Solution Below)
Properties of Fourier Transform Question 4 Detailed Solution
Concept:
Some common Fourier Transform properties are as shown:
If X(ω) is the Fourier transform of x(t) i.e. x(t) ↔ X(ω), then
Time shifting |
x(t - t0) ↔ e-jωto. X(ω) |
Frequency shifting |
ejωt . x(t) ↔ X (ω - ω0) |
Time scaling |
\({\bf{x}}\left( {{\bf{at}}} \right)\; \leftrightarrow \;\frac{1}{{\left| {\bf{a}} \right|}} \times \left( {\frac{{\bf{\omega }}}{{\bf{a}}}} \right)\) |
Time Reversal |
x(-t) ↔ X (-ω) |
Properties of Fourier Transform Question 5:
Let x1(t) = u(t + 1.5) − u(t − 1.5) and x2(t) is shown in the figure below. For y(t) = x1(t) ∗ x2(t), the \(\rm \int_{-\infty}^{\infty}y(t)dt\) is ________ (rounded off to the nearest integer).
Answer (Detailed Solution Below) 15
Properties of Fourier Transform Question 5 Detailed Solution
x1(t) = u(t + 1.5) - u(t - 1.5)
\(\Rightarrow \quad x_1(t)=\operatorname{rect}\left(\frac{t}{3}\right)\)
\( x_1(t)=\operatorname{rect}\left(\frac{t}{3}\right) \stackrel{F T}{\longleftrightarrow} 3 S a(1.5 \omega) \)
Now, \(x_2(t)=\delta(t+3)+\operatorname{rect}\left(\frac{t}{2}\right)+2 \delta(t-2) \)
Taking Fourier transform
\( X_2(\omega) =e^{3 j \omega}+2 S a(\omega)+2 e^{-2 k \omega} \)
∵ \(y(t) =x_1(t) * x_2(t) \)
\(Y(\omega) =X_1(\omega) \cdot X_2(\omega) \)
We know, \(Y(\omega) =\int_{-\infty}^{\infty} y(t) \cdot e^{-j \omega t} \cdot d t \)
∴ \(\int_{-\infty}^{\infty} y(t) =Y(0)\)
∴ Y(0) = X1(0).X2(0)
= 3[1 + 2 + 2] = 15
Top Properties of Fourier Transform MCQ Objective Questions
The Fourier transform of x*[-n] is
Answer (Detailed Solution Below)
Properties of Fourier Transform Question 6 Detailed Solution
Download Solution PDFConcept:
Fourier Transform:
\(F.T\left[ {x\left( t \right)} \right] = X\left( ω \right) = \mathop \smallint \limits_{ - \infty }^\infty x\left( t \right){e^{ - jω t}}dt\)
\(I.F.T\left[ {X\left( ω \right)} \right] = x\left( t \right)\)
\(= \frac{1}{{2π }}\mathop \smallint \limits_{ - \infty }^\infty X\left( ω \right){e^{jω t}}dt\)
Some properties of fourier transform:
Properties |
X(f) form |
X(ω) form |
Time scaling x(at) |
\(\frac{1}{{\left| a \right|}} X \left( {\frac{f}{a}} \right)\) |
\(\frac{1}{{\left| a \right|}}X\left( {\frac{ω}{a}} \right)\) |
Time reversal x(-t) |
X(-f) |
X(-ω) |
Time shift x(t ± t0) |
\({e^{ \pm 2π f{t_0}}} X\left( t \right)\) |
\({e^{ \pm jω {t_0}}} X\left( ω \right)\) |
Frequency Modulation\(x\left( t \right){e^{ \pm j{ω _0}t}}\) |
X(f ± f0) |
X(ω ± ω0) |
Differentiation in time |
\(\frac{d}{{dt}}x\left( t \right)↔ j2π f ~X\left( f \right)\) |
\(\frac{d}{{dt}}x\left( t \right)↔ jω ~X\left( ω \right)\) |
Conjugation x[n] |
X*(e-j2πf) |
X*(e-jω) |
Time reversal x[-n] |
X(e-j2πf) |
X(e-jω) |
Duality |
x(t) ↔ X(f) x(t) ↔ -X(f) |
x(t) ↔ X(ω) x(t) ↔2π X(-ω) |
Analysis:
We know that:
\({x^*}\left[ { + n} \right]\mathop \leftrightarrow \limits^{F.T} {X^*}\left( {{e^{ - j\omega }}} \right) = {X_1}\left( \omega \right)\)
Then,
\({x^*}\left[ { + n} \right]\mathop \leftrightarrow \limits^{F.T} {X^*}\left( { - \omega } \right) = {X^*}\left( {{e^{ - j\left( { - \omega } \right)}}} \right)\)
\(= {X^*}\left( {{e^{j\omega }}} \right)\)
Option (2) correct.
More information:
- Fourier transform of the real signal is always even conjugate in nature.
- F.T [Real & even signal] = purely real and even.
- F.T [Real & odd signal] = purely imaginary and odd.
- Shifting in the time domain only changes the phase spectrum of the signal.
The value of the integral \(\mathop \smallint \limits_{ - \infty }^\infty \sin {c^2}\left( {5t} \right)dt\) is ________
Answer (Detailed Solution Below) 0.19 - 0.21
Properties of Fourier Transform Question 7 Detailed Solution
Download Solution PDFConcept:
The Fourier transform of a signal x(t) is defined as:
\(X\left( \omega \right) = \mathop \smallint \limits_{ - \infty }^\infty x\left( t \right){e^{ - j\omega t}}dt\)
Let ω = 0
\(X\left( 0 \right) = \mathop \smallint \limits_{ - \infty }^\infty x\left( t \right)dt\)
Analysis:
For x(t) = sin c2 (5t), we find it’s Fourier transform X(ω) and then find X(0) using the above concept.
Sinc function is defined as:
\(\sin ct = \frac{{\sin \pi t}}{{\pi t}}\)
Also, the Fourier transform of a sinc function is a rectangular pulse as shown:
\({x_1}\left( t \right) \cdot {x_2}\left( t \right) \leftrightarrow \frac{1}{{2\pi }}\left[ {\frac{1}{1}\left( \omega \right)*\frac{1}{2}\left( \omega \right)} \right]\)
Calculation:
x(t) = sin c25t = (sin c 5t) (sin c 5t)
\(x\left( t \right) = \left( {\frac{{\sin 5\pi t}}{{5\pi t}}} \right) \cdot \left( {\frac{{\sin 5\pi t}}{{5\pi t}}} \right)\)
\(\mathop \smallint \limits_{ - \infty }^\infty \sin {c^2}\left( {5t} \right)dt = X\left( 0 \right)\)
X(0) = 0.2
What is the Fourier Inverse of \(H(f)=\frac{j3πf}{1+jπf}\)?
Answer (Detailed Solution Below)
Properties of Fourier Transform Question 8 Detailed Solution
Download Solution PDFConcept:
If x(t) has Fourier transform X(ω)
\(x(t) ↔X(ω) \)
Then,
\(e^{-at} u(t) ↔\frac {1}{a+jω} \)
Also, the Fourier transform of a discrete-time signal is 1, i.e.
δ(t) ↔ 1
Calculation:
\(H(f)=\frac{j3πf}{1+jπf} \)
Since ω = 2πf, the above can be written as:
\(H(ω)=\frac{j1.5ω}{1+j0.5ω}=\frac{3jω}{2+jω}\)
\(H(ω)=3-\frac{6}{2+jω}\)
Taking the inverse Fourier transform of the above, we get:
h(t) = 3δ(t) – 6e-2t 4(t)
Which type of property is shown by the following function.
L{K f(t)} = K F(s)
Answer (Detailed Solution Below)
Properties of Fourier Transform Question 9 Detailed Solution
Download Solution PDFConcept:
Some common Fourier Transform properties are as shown:
If X(ω) is the Fourier transform of x(t) i.e. x(t) ↔ X(ω), then
Time shifting |
x(t - t0) ↔ e-jωto. X(ω) |
Frequency shifting |
ejωt . x(t) ↔ X (ω - ω0) |
Time scaling |
\({\bf{x}}\left( {{\bf{at}}} \right)\; \leftrightarrow \;\frac{1}{{\left| {\bf{a}} \right|}} \times \left( {\frac{{\bf{\omega }}}{{\bf{a}}}} \right)\) |
Time Reversal |
x(-t) ↔ X (-ω) |
A real-valued signal 𝑥(𝑡) limited to the frequency band \(\left| f \right| \le \frac{W}{2}\) is passed through a linear time-invariant system whose frequency response is
\(H\left( f \right) = \left\{ {\begin{array}{*{20}{c}} {{e^{ - j4\pi f,\;\;\;\left| f \right| \le \frac{W}{2}}}}\\ {0,\;\;\;\;\left| f \right| > \frac{W}{2}} \end{array}} \right.\)
The output of the system isAnswer (Detailed Solution Below)
Properties of Fourier Transform Question 10 Detailed Solution
Download Solution PDFConcept:
Time-shifting property of Fourier Transform:
Shiting in time domain results in a phase shift in the frequency domain, i.e.
\(If\;x\left( t \right)\mathop \leftrightarrow \limits^{FT} X\left( f \right)\)
\(x\left( {t - {t_0}} \right)\mathop \leftrightarrow \limits^{FT} X\left( f \right){e^{ - j2\pi f{t_0}}}\)
If a signal x(t) is passed through a system having transfer function H(f), then the output of the system is:
\(Y\left( f \right) = X\left( f \right)H\left( f \right)\)
where \(x\left( t \right)\mathop \leftrightarrow \limits^{FT} X\left( f \right)\) and
\(y\left( t \right)\mathop \leftrightarrow \limits^{FT} Y\left( f \right)\)
Calculation:
Since both X(f) and H(f) are band-limited to the same frequency band, we can write:
\(Y\left( f \right) = X\left( f \right).H\left( f \right) = X\left( f \right){e^{ - j4\pi f}} = X\left( f \right).{e^{ - i2\pi f \times 2}}\)
Using time shifting property of the Fourier transform, we can write:
\(X\left( f \right).{e^{ - i2\pi f \times 2}}\xrightarrow{IFT} x\left( {t - 2} \right)\)
X(ω) is the Fourier transform of x(t) shown below. The value of \(\mathop{\int }_{-\infty }^{\infty }{{\left| X\left( \omega \right) \right|}^{2}}d\omega \) (rounded off to two decimal places) is _________.
Answer (Detailed Solution Below) 58.00 - 58.80
Properties of Fourier Transform Question 11 Detailed Solution
Download Solution PDFConcept:
According to Parseval's Theorem, the energy of a signal is related to the Fourier Transform as:
\(E\left( x\left( t \right) \right)=\frac{1}{2\pi }\underset{-\infty }{\overset{0}{\mathop \int }}\,{{\left| X\left( j\omega \right) \right|}^{2}}d\omega \)
Where X(jω) is the Fourier Transform of signal x(t)
Also, since the energy of the signal is defined as:
\(E\left( x\left( t \right) \right)=\underset{-\infty }{\overset{\infty }{\mathop \int }}\,{{x}^{2}}\left( t \right)d\left( t \right)\)
Parseval’s Theorem can be written as:
\(\underset{-\infty }{\overset{\infty }{\mathop \int }}\,{{x}^{2}}\left( t \right)d=\frac{1}{2\pi }\underset{-\infty }{\overset{\infty }{\mathop \int }}\,{{\left| X\left( j\omega \right) \right|}^{2}}d\omega \) ---(1)
Application:
From equation (1) we can write:
\(\underset{-\infty }{\overset{\infty }{\mathop \int }}\,{{\left| X\left( j\omega \right) \right|}^{2}}d\omega =2\pi \underset{-\infty }{\overset{\infty }{\mathop \int }}\,{{x}^{2}}\left( t \right)dt\) ---(2)
Since time-shifting does not affect the energy of a signal, we can evaluate the energy of x(t + 1) as well which will be the same as the energy of the signal x(t).
Now the energy of the above signal s(t) will be the same as the energy of the original signal x(t).
s(t) is defined as:
s(t) = t + 2, -2 < t < -1
s(t) = 2t + 3, -1 < t < 0
Since the signal s(t) is also symmetrical about the origin, equation (2) can be written as:
\(\underset{-\infty }{\overset{\infty }{\mathop \int }}\,X{{\left( j\omega \right)}^{2}}=2\pi \times 2\underset{-\infty }{\overset{0}{\mathop \int }}\,{{s}^{2}}\left( t \right)dt\)
\(=2\times 2\pi \left[ \underset{-\infty ~}{\overset{-1}{\mathop \int }}\,{{\left( t+2 \right)}^{2}}dt+\underset{-1}{\overset{0}{\mathop \int }}\,{{\left( 2t+3 \right)}^{2}}dt \right]\)
\(=4\pi \left[ \left. \frac{{{\left( t+2 \right)}^{2}}}{3} \right|_{-2}^{-1}+\left. \frac{{{\left( 2t+3 \right)}^{3}}}{3\times 2} \right|_{-1}^{0} \right]\)
\(=4\pi \left[ \frac{1-0}{3}+\frac{{{3}^{3}}-1}{6} \right]\)
\(=4\pi \left( \frac{1}{3}+\frac{26}{3} \right)\)
\(=4\pi \times \frac{14}{3}\)
\(\therefore ~\underset{-\infty }{\overset{\infty }{\mathop \int }}\,{{\left| X\left( j\omega \right) \right|}^{2}}=\frac{56\pi }{3}=58.61\)
If the signal \({\rm{x}}\left( {\rm{t}} \right) = \frac{{{\rm{sin}}\left( {\rm{t}} \right)}}{{{\rm{\pi t}}}}{\rm{\;*}}\frac{{{\rm{sin}}\left( {\rm{t}} \right)}}{{{\rm{\pi t}}}}\) with ∗ denoting the convolution operation, then x(t) is equal to
Answer (Detailed Solution Below)
Properties of Fourier Transform Question 12 Detailed Solution
Download Solution PDFConcept:
\(x\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {A;\;\;\;\left| t \right| \le \frac{\tau }{2}}\\ {0;\;\;\;\;\left| t \right| > \frac{\tau }{2}} \end{array}} \right.\)
\(x\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {A; - \frac{\tau }{2} \le t \le \frac{\tau }{2}}\\ {0;\;\;\;\;otherwise} \end{array}} \right.\)
This signal can be represented as:
\(x\left( t \right) = A\left[ {u\left( {t - \frac{\tau }{2}} \right) - u\left( {\tau + \frac{1}{2}} \right)} \right]\)
By applying the Fourier transform,
\(X\left( \omega \right) = \mathop \smallint \limits_{ - \frac{\tau }{2}}^{\frac{\tau }{2}} A.{e^{ - j\omega t}}dt\)
\( = - \frac{A}{{j\omega }}\left[ {{e^{ - \frac{{j\omega }}{2}}} - {e^{\frac{{j\omega }}{2}}}} \right]\)
\( = 2A\frac{{{e^{\frac{{j\omega \tau }}{2}}} - {e^{ - \frac{{j\omega \tau }}{2}}}}}{{2j\omega }}\)
\( = \frac{{2A}}{\omega }\sin \frac{{\omega \tau }}{2}\)
\( = \frac{{2A\tau }}{{\omega \tau }}\sin \frac{{\omega \tau }}{2}\)
\( = A\tau \frac{{\sin \frac{{\omega \tau }}{2}}}{{\frac{{\omega \tau }}{2}}}\)
By putting ω = 2πF
\( = A\tau \frac{{\sin \pi F\tau }}{{\pi F\tau }}\)
Calculation:
\({\rm{x}}\left( {\rm{t}} \right) = \frac{{\sin {\rm{t}}}}{{{\rm{\pi t}}}}{\rm{*}}\frac{{\sin {\rm{t}}}}{{{\rm{\pi t}}}}\)
The Fourier transform of the given since function will be a rectangular wave as shown:
Since the convolution time domain is the multiplication in the frequency domain, the Fourier transform (Spectrum) of x(t) will be:
Now inverse Fourier, we get the time-domain expression of x(t) as:
Thus, \(\frac{{{\rm{sint}}}}{{{\rm{\pi t}}}}{\rm{*}}\frac{{{\rm{sint}}}}{{{\rm{\pi t}}}} = \frac{{{\rm{sint}}}}{{{\rm{\pi t}}}}\)
Let z(t) be the output of the first system and the input to the second system in the cascade. Find the output y(t).
Answer (Detailed Solution Below)
Properties of Fourier Transform Question 13 Detailed Solution
Download Solution PDFAnalysis:
When two blocks are cascaded their impulse responses are to be convolved.
Here two blocks are cascaded, then equivalent impulse response of the whole system will be:
b1(t) ⊗ b2(t)
In the above figure:
z(t) = x(t) ⊗ b1(t)
y(t) = z(t) ⊗ b2(t)
The expression for y(t) in terms of x(t) will be:
y(t) =x(t) ⊗ (b1(t)⊗b2(t))
Important Points
Properties of convolution:
Associativity: f1 * (f2 * f3) = (f1 * f2) * f3
Commutativity: f1 * f2 = f2 * f1
Distribitivity: f1 * (f2 + f3) = f1 * f2 + f1 * f3
Multilinearity: a(f1 * f2) = (af1) * f2 = f1(af2)
The output of a continuous-time system y(t) is related to its input x(t) as y(t) = x(t) + \(\frac{1}{2}\) x(t − 1). If the Fourier transforms of x(t) and y(t) are X(ω) and Y(ω) respectively, and |X(0)|2 = 4, the value of |Y(0)|2 is ______
Answer (Detailed Solution Below) 9
Properties of Fourier Transform Question 14 Detailed Solution
Download Solution PDF\(y\left( t \right) = x\left( t \right) + \frac{1}{2}x\left( {t - 1} \right)\)
By applying Fourier transform,
\(Y\left( \omega \right) = X\left( \omega \right) + \frac{1}{2}{e^{ - j\omega }}X\left( \omega \right)\)
\(Y\left( \omega \right) = \left( {1 + \frac{1}{2}{e^{ - j\omega }}} \right)X\left( \omega \right)\)
\(\Rightarrow \frac{{Y\left( \omega \right)}}{{X\left( \omega \right)}} = 1 + \frac{1}{2}{e^{ - j\omega }}\)
\(\Rightarrow H\left( \omega \right) = 1 + \frac{1}{2}{e^{ - j\omega }}\)
\(\Rightarrow H\left( 0 \right) = 1 + \frac{1}{2} = \frac{3}{2}\)
Y(ω) = X(ω).H(ω)
⇒ |Y(ω)|2 = |X(ω)|2.|H(ω)|2
⇒ |Y(0)|2 = |X(0)|2.|H(0)|2
\(\Rightarrow {\left| {Y\left( 0 \right)} \right|^2} = 4.{\left( {\frac{3}{2}} \right)^2} = 4 \times \frac{9}{4} = 9\)The energy of the signal \(x(t) = \frac{{{\rm{sin}}\left( {4{\rm{\pi t}}} \right)}}{{4{\rm{\pi t}}}}\) is______
Answer (Detailed Solution Below) 0.25
Properties of Fourier Transform Question 15 Detailed Solution
Download Solution PDFWe know,
\({\rm{x}}\left( {\rm{t}} \right) = \frac{{{\rm{sin}}4{\rm{\pi t}}}}{{4{\rm{\pi t}}}}\)
Integrating mod square of x(t) to find the energy will be a tedious process.
Fourier transform of \(\frac{{{\rm{sin}}4{\rm{\pi t}}}}{{4{\rm{\pi t}}}}\)
From Parseval’s theorem
\(\mathop \smallint \limits_{ - \infty }^\infty {\left| {{\rm{x}}\left( {\rm{t}} \right)} \right|^2}{\rm{dt}} = \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - \infty }^\infty {\left| {{\rm{X}}\left( {\rm{\omega }} \right)} \right|^2}{\rm{d\omega }}\)
we have,
\(\begin{array}{l} \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - 4{\rm{\pi }}}^{4{\rm{\pi }}} {\left( {\frac{1}{4}} \right)^2}{\rm{d\omega }} = \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - 4{\rm{\pi }}}^{4{\rm{\pi }}} \frac{1}{{16}}{\rm{d\omega }}\\ \Rightarrow = \left. {\frac{1}{{2{\rm{\pi }}}}.\frac{1}{{16}}{\rm{\omega }}} \right|_{ - 4{\rm{\pi }}}^{4{\rm{\pi }}}\\ = \frac{1}{{2{\rm{\pi }}}}.\frac{1}{{16}}.8{\rm{\pi }} = \frac{1}{4} \end{array}\)
Thus,
signal's energy \(\mathop \smallint \limits_{ - \infty }^\infty {\left| {{\rm{x}}\left( {\rm{t}} \right)} \right|^2}{\rm{dt}} = \frac{1}{4}\)