For Discrete Frequency Distribution MCQ Quiz - Objective Question with Answer for For Discrete Frequency Distribution - Download Free PDF

Last updated on Apr 11, 2025

Latest For Discrete Frequency Distribution MCQ Objective Questions

For Discrete Frequency Distribution Question 1:

What is the mean deviation of the first 10 natural numbers?

  1. 2
  2. 2.5
  3. 3
  4. 3.5

Answer (Detailed Solution Below)

Option 2 : 2.5

For Discrete Frequency Distribution Question 1 Detailed Solution

Explanation:

The mean of 10 natural numbers 

⇒ \(\overline{x} = \frac{1+2+3+4+....10}{10}\) 

\(\frac{10\times11}{2\times10}\) = 5.5

Mean deviation = \(\frac{[1- 5.5] [2-5.5] [3- 5.5] ... [10- 5.5]}{10} = 2.5\)

∴ Option (b) is correct.

For Discrete Frequency Distribution Question 2:

What is the mean deviation of first 10 even natural numbers?

  1. 5
  2. 5.5
  3. 10
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 5

For Discrete Frequency Distribution Question 2 Detailed Solution

Concept:

Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

Where,

\(\bar{X}= \frac{∑ x}{n}\) = mean, 

∑x = sum of all observations,

n = number of observations. 

Calculation:

First 10 even natural numbers are

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Mean, 

X̅  = \(\rm \frac{2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20}{10}\) 

⇒ X̅ = 11

Therefore, the mean value is 11

Now, subtract each mean from the first 10 even natural numbers, and ignore the minus symbol if any

⇒ Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

 Mean deviation \(=\frac{1}{10}(|2 - 11|+ |4 - 11| + |6-11|+|8-11|+|10-11|+\\|12-11|+|14-11|+|16-11|+|18-11|+|20-11|\)

⇒  \(\rm\frac{9 + 7 + 5 + 3 + 1 + 1 + 3 + 5 + 7 + 9}{10}\) = \(\frac{50}{10}\)

∴ The mean deviation of the first 10 even natural numbers is 5.

For Discrete Frequency Distribution Question 3:

What is the mean deviation of first 10 even natural numbers?

  1. 5
  2. 5.5
  3. 10
  4. 10.5

Answer (Detailed Solution Below)

Option 1 : 5

For Discrete Frequency Distribution Question 3 Detailed Solution

Concept:

Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

Where,

\(\bar{X}= \frac{∑ x}{n}\) = mean, 

∑x = sum of all observations,

n = number of observations. 

Calculation:

First 10 even natural numbers are

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Mean, 

X̅  = \(\rm \frac{2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20}{10}\) 

⇒ X̅ = 11

Therefore, the mean value is 11

Now, subtract each mean from the first 10 even natural numbers, and ignore the minus symbol if any

⇒ Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

 Mean deviation \(=\frac{1}{10}(|2 - 11|+ |4 - 11| + |6-11|+|8-11|+|10-11|+\\|12-11|+|14-11|+|16-11|+|18-11|+|20-11|\)

⇒  \(\rm\frac{9 + 7 + 5 + 3 + 1 + 1 + 3 + 5 + 7 + 9}{10}\) = \(\frac{50}{10}\)

∴ The mean deviation of the first 10 even natural numbers is 5.

For Discrete Frequency Distribution Question 4:

Calculate the Mean deviation from the median

X

10

11

12

13

f

6

12

18

12

  1. 0.75
  2. 7.5
  3. 0.65
  4. 0.40

Answer (Detailed Solution Below)

Option 1 : 0.75

For Discrete Frequency Distribution Question 4 Detailed Solution

Formula

Median = (n + 1)/2

Calculation

Median = value of (n + 1)/2th item

⇒ (48 + 1)/2 = 24.5th item

24.5 lies in cf of 36

∴ Median = 12

X

F

cf

 I x – Median I 

 f I x – median I 

10

6

0 + 6 = 6

I10 – 12I = 2

6 × 2 = 12

11

12

6 + 12 = 18

I11 – 12I = 1

12 × 1 = 12

12

18

18 + 18 = 36

I12 – 12I = 0

12 × 0 = 0

13

12

36 + 12 = 48

I13 – 12I = 1

12 × 1 = 12

 

N = 48

   

Sum = 36


Mean deviation about median = (1/48)(36)

⇒ 0.75

Mean deviation about median is 0.75

Top For Discrete Frequency Distribution MCQ Objective Questions

Calculate the Mean deviation from the median

X

10

11

12

13

f

6

12

18

12

  1. 0.75
  2. 7.5
  3. 0.65
  4. 0.40

Answer (Detailed Solution Below)

Option 1 : 0.75

For Discrete Frequency Distribution Question 5 Detailed Solution

Download Solution PDF

Formula

Median = (n + 1)/2

Calculation

Median = value of (n + 1)/2th item

⇒ (48 + 1)/2 = 24.5th item

24.5 lies in cf of 36

∴ Median = 12

X

F

cf

 I x – Median I 

 f I x – median I 

10

6

0 + 6 = 6

I10 – 12I = 2

6 × 2 = 12

11

12

6 + 12 = 18

I11 – 12I = 1

12 × 1 = 12

12

18

18 + 18 = 36

I12 – 12I = 0

12 × 0 = 0

13

12

36 + 12 = 48

I13 – 12I = 1

12 × 1 = 12

 

N = 48

   

Sum = 36


Mean deviation about median = (1/48)(36)

⇒ 0.75

Mean deviation about median is 0.75

What is the mean deviation of first 10 even natural numbers?

  1. 5
  2. 5.5
  3. 10
  4. 10.5

Answer (Detailed Solution Below)

Option 1 : 5

For Discrete Frequency Distribution Question 6 Detailed Solution

Download Solution PDF

Concept:

Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

Where,

\(\bar{X}= \frac{∑ x}{n}\) = mean, 

∑x = sum of all observations,

n = number of observations. 

Calculation:

First 10 even natural numbers are

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Mean, 

X̅  = \(\rm \frac{2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20}{10}\) 

⇒ X̅ = 11

Therefore, the mean value is 11

Now, subtract each mean from the first 10 even natural numbers, and ignore the minus symbol if any

⇒ Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

 Mean deviation \(=\frac{1}{10}(|2 - 11|+ |4 - 11| + |6-11|+|8-11|+|10-11|+\\|12-11|+|14-11|+|16-11|+|18-11|+|20-11|\)

⇒  \(\rm\frac{9 + 7 + 5 + 3 + 1 + 1 + 3 + 5 + 7 + 9}{10}\) = \(\frac{50}{10}\)

∴ The mean deviation of the first 10 even natural numbers is 5.

What is the mean deviation of the first 10 natural numbers?

  1. 2
  2. 2.5
  3. 3
  4. 3.5

Answer (Detailed Solution Below)

Option 2 : 2.5

For Discrete Frequency Distribution Question 7 Detailed Solution

Download Solution PDF

Explanation:

The mean of 10 natural numbers 

⇒ \(\overline{x} = \frac{1+2+3+4+....10}{10}\) 

\(\frac{10\times11}{2\times10}\) = 5.5

Mean deviation = \(\frac{[1- 5.5] [2-5.5] [3- 5.5] ... [10- 5.5]}{10} = 2.5\)

∴ Option (b) is correct.

For Discrete Frequency Distribution Question 8:

Calculate the Mean deviation from the median

X

10

11

12

13

f

6

12

18

12

  1. 0.75
  2. 7.5
  3. 0.65
  4. 0.40

Answer (Detailed Solution Below)

Option 1 : 0.75

For Discrete Frequency Distribution Question 8 Detailed Solution

Formula

Median = (n + 1)/2

Calculation

Median = value of (n + 1)/2th item

⇒ (48 + 1)/2 = 24.5th item

24.5 lies in cf of 36

∴ Median = 12

X

F

cf

 I x – Median I 

 f I x – median I 

10

6

0 + 6 = 6

I10 – 12I = 2

6 × 2 = 12

11

12

6 + 12 = 18

I11 – 12I = 1

12 × 1 = 12

12

18

18 + 18 = 36

I12 – 12I = 0

12 × 0 = 0

13

12

36 + 12 = 48

I13 – 12I = 1

12 × 1 = 12

 

N = 48

   

Sum = 36


Mean deviation about median = (1/48)(36)

⇒ 0.75

Mean deviation about median is 0.75

For Discrete Frequency Distribution Question 9:

What is the mean deviation of first 10 even natural numbers?

  1. 5
  2. 5.5
  3. 10
  4. 10.5

Answer (Detailed Solution Below)

Option 1 : 5

For Discrete Frequency Distribution Question 9 Detailed Solution

Concept:

Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

Where,

\(\bar{X}= \frac{∑ x}{n}\) = mean, 

∑x = sum of all observations,

n = number of observations. 

Calculation:

First 10 even natural numbers are

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Mean, 

X̅  = \(\rm \frac{2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20}{10}\) 

⇒ X̅ = 11

Therefore, the mean value is 11

Now, subtract each mean from the first 10 even natural numbers, and ignore the minus symbol if any

⇒ Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

 Mean deviation \(=\frac{1}{10}(|2 - 11|+ |4 - 11| + |6-11|+|8-11|+|10-11|+\\|12-11|+|14-11|+|16-11|+|18-11|+|20-11|\)

⇒  \(\rm\frac{9 + 7 + 5 + 3 + 1 + 1 + 3 + 5 + 7 + 9}{10}\) = \(\frac{50}{10}\)

∴ The mean deviation of the first 10 even natural numbers is 5.

For Discrete Frequency Distribution Question 10:

What is the mean deviation of the first 10 natural numbers?

  1. 2
  2. 2.5
  3. 3
  4. 3.5

Answer (Detailed Solution Below)

Option 2 : 2.5

For Discrete Frequency Distribution Question 10 Detailed Solution

Explanation:

The mean of 10 natural numbers 

⇒ \(\overline{x} = \frac{1+2+3+4+....10}{10}\) 

\(\frac{10\times11}{2\times10}\) = 5.5

Mean deviation = \(\frac{[1- 5.5] [2-5.5] [3- 5.5] ... [10- 5.5]}{10} = 2.5\)

∴ Option (b) is correct.

For Discrete Frequency Distribution Question 11:

What is the mean deviation of first 10 even natural numbers?

  1. 5
  2. 5.5
  3. 10
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 5

For Discrete Frequency Distribution Question 11 Detailed Solution

Concept:

Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

Where,

\(\bar{X}= \frac{∑ x}{n}\) = mean, 

∑x = sum of all observations,

n = number of observations. 

Calculation:

First 10 even natural numbers are

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Mean, 

X̅  = \(\rm \frac{2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20}{10}\) 

⇒ X̅ = 11

Therefore, the mean value is 11

Now, subtract each mean from the first 10 even natural numbers, and ignore the minus symbol if any

⇒ Mean deviation = \(\frac{1}{n}|x_i-\bar{X}|\)

 Mean deviation \(=\frac{1}{10}(|2 - 11|+ |4 - 11| + |6-11|+|8-11|+|10-11|+\\|12-11|+|14-11|+|16-11|+|18-11|+|20-11|\)

⇒  \(\rm\frac{9 + 7 + 5 + 3 + 1 + 1 + 3 + 5 + 7 + 9}{10}\) = \(\frac{50}{10}\)

∴ The mean deviation of the first 10 even natural numbers is 5.

Get Free Access Now
Hot Links: teen patti master game teen patti master official teen patti real cash apk teen patti