What is the state-transition matrix Φ{t) of the following system?

\(\begin{bmatrix}\dot {x_1}\\\ \dot {x_2}\end{bmatrix}=\begin{bmatrix}0&1\\\ -2&-3\end{bmatrix}\begin{bmatrix} {x_1}\\\ {x_2}\end{bmatrix}\)

This question was previously asked in
UPSC IES Electrical 2022 Prelims Official Paper
View all UPSC IES Papers >
  1. \(\Phi(t)=\begin{bmatrix}e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-e^{-t}+2e^{-2t}\end{bmatrix}\)
  2. \(\Phi(t)=\begin{bmatrix}2e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-e^{-t}+2e^{-2t}\end{bmatrix}\)
  3. \(\Phi(t)=\begin{bmatrix}2e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -e^{-t}+e^{-2t} &-e^{-t}+e^{-2t}\end{bmatrix}\)
  4. \(\Phi(t)=\begin{bmatrix}2e^{-t}-2e^{-2t}&2e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-2e^{-t}+2e^{-2t}\end{bmatrix}\)

Answer (Detailed Solution Below)

Option 2 : \(\Phi(t)=\begin{bmatrix}2e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-e^{-t}+2e^{-2t}\end{bmatrix}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.4 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

Concept:

State transition matrix:

It is defined as inverse Laplace transform of |sI - A|-1

⇒ L-1 |sI - A|-1 = eAt = ϕ(t)

Given as state model, ẋ = A x(t)

Comparing with standard equation ẋ = A x(t) + B u(t)

Calculation:

\(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ -2&-3 \end{array}} \right]\)

\(\left| {sI - A} \right| = \left[ {\begin{array}{*{20}{c}} s&0\\ 0&s \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 0&1\\ -2&-3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {s }&-1\\ { 2}&{s +3} \end{array}} \right]\)

\({\left| {sI - A} \right|^{ - 1}} = \frac{1}{{{s^2+3s+2}}}\;\left[ {\begin{array}{*{20}{c}} {s +3}&1\\ -2&{s} \end{array}} \right]\)

 

Taking inverse Laplace transform,

\(\Phi(t)=\begin{bmatrix}2e^{-t}-e^{-2t}&e^{-t}-e^{-2t}\\\ -2e^{-t}+2e^{-2t} &-e^{-t}+2e^{-2t}\end{bmatrix}\)

Additional Information

Properties:

State transition matrix, ϕ(t) = eAt

  • ϕ(0) = eA0) = I, Identity matrix
  • \({\phi ^{ - 1}}\left( t \right) = \phi \left( { - t} \right)\)
  • ϕ(t1 + t2) = ϕ(t1) ϕ(t2)
  • [ϕ(t)]n = ϕ(nt)
  • ϕ(t2 – t1) ϕ (t2 – t0) = ϕ (t2 – t0) = ϕ (t1 – t0) ϕ (t2 – t1)      


Trick: The above question can also be solved with the help of trick.

\(\phi \left( 0 \right) = {e^{{A^{\left( 0 \right)}}}} = I\), the Identity matrix.

We can put t = 0, in all the options and can be found the answer.

After putting t = 0, if the matrix becomes an identity matrix, that will be the answer.

Latest UPSC IES Updates

Last updated on Jul 2, 2025

-> ESE Mains 2025 exam date has been released. As per the schedule, UPSC IES Mains exam 2025 will be conducted on August 10. 

-> UPSC ESE result 2025 has been released. Candidates can download the ESE prelims result PDF from here.

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More State Transition Matrix Questions

More State Space Analysis Questions

Get Free Access Now
Hot Links: online teen patti teen patti master apk best teen patti real