In an AC circuit with resistance R = 1 Ω and oscillating potential v = vsinωt, where vm = 1 V and ω = 2π rad/s, the value of average current in time t ∈ [0 s, 0.5 s] is,

 F19 Prabhu 28-5-2021 Swati D1 

  1. \(\frac {2}{\pi}A\)
  2. \(\frac {1}{\pi}A\)
  3. \(\frac {1}{2\pi}A\)
  4. \(\pi A\)

Answer (Detailed Solution Below)

Option 1 : \(\frac {2}{\pi}A\)

Detailed Solution

Download Solution PDF

CONCEPT:

  • The oscillating potential of an AC circuit is given by

⇒ v = vsinωt

where 'vm' is the amplitude of the oscillating potential difference and 'ω' is the angular frequency

F19 Prabhu 28-5-2021 Swati D1

  • The oscillating current in an AC circuit is given by

\(⇒ i = \frac{v_m}{R} sin ω t\)

where 'i' is the amplitude of the oscillating current

since 'vm' and 'R' are constants, 

⇒ i = isinωt

where \( i_m = \frac{v_m}{R} \)

F19 Prabhu 28-5-2021 Swati D2

EXPLANATION:

Given: resistance R = 1 Ω, oscillating potential v = vsinωt, where vm = 1 V and ω = 2π rad/s

  • The oscillating potential of an AC circuit is given by

⇒ v = vsinωt

where 'vm' is the amplitude of the oscillating potential difference and 'ω' is the angular frequency

F19 Prabhu 28-5-2021 Swati D1

  • The oscillating current in an AC circuit is given by

\(⇒ i = \frac{v_m}{R} sin ω t\)

where 'i' is the amplitude of the oscillating current

  • The average current over a half sinusoidal cycle is

\(⇒ i_{avg} = \frac {1}{t}\int_0^{t} \frac{v_m}{R} sin ω t dt\)

\(⇒ i_{avg} = \frac {1}{0.5}\int_0^{0.5} \frac{1}{1} sin (2\pi t) dt = -\frac {1}{0.5\times 2\pi} (cos (2\pi \times 0.5) -cos 0)=\frac {2}{\pi}A\)

  • ​Therefore option 1 is correct.

More AC Voltage Applied to a Resistor Questions

More Electromagnetic Oscillations and Alternating Current Questions

Get Free Access Now
Hot Links: online teen patti real money teen patti bonus teen patti 50 bonus