Question
Download Solution PDFसदिश 7î + 4ĵ - 3k̂ का दिशा कोसाइन ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
सदिश aî + bĵ + ck̂ के दिशा कोसाइन को α = \(\rm \pm \frac{a}{\sqrt{a^2+b^2+c^2}}\), β = \(\rm \pm \frac{b}{\sqrt{a^2+b^2+c^2}}\) और γ = \(\rm\pm \frac{c}{\sqrt{a^2+b^2+c^2}}\) द्वारा ज्ञात किया गया है।
गणना:
दिए गए सदिश 7î + 4ĵ - 3k̂ के लिए, a = 7, b = 4 और c = -3
सदिश के दिशा कोसाइन निम्न हैं:
α = \(\rm\pm \frac{7}{\sqrt{7^2+4^2+(-3)^2}}\), β = \(\rm \pm \frac{4}{\sqrt{7^2+4^2+(-3)^2}}\) और γ = \(\rm\pm \frac{-3}{\sqrt{7^2+4^2+(-3)^2}}\)
⇒ α = \(\rm \pm \frac{7}{\sqrt{74}}\), β = \(\rm \pm \frac{4}{\sqrt{74}}\) और γ = \(\rm \frac{\mp 3}{\sqrt{74}}\)
∴ (α , β , γ ) = (\(\rm \frac{7}{\sqrt{74}}, \rm \frac{4}{\sqrt{74}},\rm \frac{-3}{\sqrt{74}}\)) या (\(\rm \frac{-7}{\sqrt{74}}, \rm \frac{-4}{\sqrt{74}},\rm \frac{3}{\sqrt{74}}\))
Last updated on Jun 17, 2025
-> The CUET 2025 provisional answer key has been made public on June 17, 2025 on the official website.
-> The CUET 2025 Postponed for 15 Exam Cities Centres.
-> The CUET 2025 Exam Date was between May 13 to June 3, 2025.
-> 12th passed students can appear for the CUET UG exam to get admission to UG courses at various colleges and universities.
-> Prepare Using the Latest CUET UG Mock Test Series.
-> Candidates can check the CUET Previous Year Papers, which helps to understand the difficulty level of the exam and experience the same.