\(\rm \int_{1}^{e}\frac{dx}{x\sqrt{2+\ln x}}\) का मूल्यांकन कीजिए। 

  1. e
  2. \((​​\sqrt 2 - \sqrt 3)\)
  3. \((​​\sqrt 3 - \sqrt 2)\)
  4. 3

Answer (Detailed Solution Below)

Option 3 : 2 \((​​\sqrt 3 - \sqrt 2)\)
Free
General Knowledge for All Defence Exams (शूरवीर): Special Live Test
23.2 K Users
20 Questions 20 Marks 16 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

\(\rm \dfrac{d(\ln x)}{dx} = \dfrac{1}{x}\)

 

गणना:

माना कि I = \(\rm \int_{1}^{e}\frac{dx}{x\sqrt{2+\ln x}}\) है। 

माना कि (2 + ln x) = t है। 

x के संबंध में अवकलन करने पर, हमें निम्न प्राप्त होता है

⇒ (0 + \(\rm \frac 1 x\))dx = 2tdt

⇒ \(\rm \frac 1 x\)dx = 2tdt

x

1

e

t

\(\sqrt 2\)

\(\sqrt 3\)

 

अब, 

\(\rm I=\rm \int_{\sqrt 2}^{\sqrt 3}\frac{2tdt}{\sqrt{t^2}}\\=2\int_{\sqrt 2}^{\sqrt 3}\frac{tdt}{t}\\=2\int_{\sqrt 2}^{\sqrt 3}dt\\=2[t]_{\sqrt 2}^{\sqrt 3}\\=2(\sqrt 3- \sqrt 2)\)

 

Latest Airforce Group X Updates

Last updated on Jul 11, 2025

->Indian Airforce Agniveer (02/2026) Online Form Link has been activated at the official portal. Interested candidates can apply between 11th July to 31st July 2025.

->The Examination will be held 25th September 2025 onwards.

-> Earlier, Indian Airforce Agniveer Group X 2025 Last date had been extended.

-> Candidates applied online from 7th to 2nd February 2025.

-> The online examination was conducted from 22nd March 2025 onwards.

-> The selection of the candidates will depend on three stages which are Phase 1 (Online Written Test), Phase 2 ( DV, Physical Fitness Test, Adaptability Test), and Phase 3 (Medical Examination).

-> The candidates who will qualify all the stages of selection process will be selected for the Air Force Group X posts & will receive a salary ranging of Rs. 30,000.

-> This is one of the most sought jobs. Candidates can also check the Airforce Group X Eligibility here.

More Definite Integrals Questions

Get Free Access Now
Hot Links: teen patti master teen patti pro teen patti stars