For discrete- -time sinc function, what is the inverse discrete-time Fourier transform of the function as shown in the figure?

F2 Madhuri Engineering 07.06.2022 D2

This question was previously asked in
UPSC IES Electrical 2022 Prelims Official Paper
View all UPSC IES Papers >
  1. \(\rm x[n]=\frac{W}{\pi}\sin c\left(\frac{Wn}{2\pi}\right)\)
  2. \(\rm x[n]=\frac{W}{2\pi}\sin c\left(\frac{Wn}{\pi}\right)\)
  3. \(\rm x[n]=\frac{W}{\pi}\sin c\left(\frac{Wn}{\pi}\right)\)
  4. \(\rm x[n]=\frac{2W}{\pi}\sin c\left(\frac{Wn}{2\pi}\right)\)

Answer (Detailed Solution Below)

Option 3 : \(\rm x[n]=\frac{W}{\pi}\sin c\left(\frac{Wn}{\pi}\right)\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.2 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

Concept: Inverse disude time fourier transform is given by the formula

x(n) = \(\frac{1}{{2π }}\int\limits_{ - π }^π { \times \left( {{e^{jw}}} \right)} \,\,{e^{jwn}}\,dw\)

Calculation: Given DTFT

F2 Madhuri Engineering 07.06.2022 D2

i.e. x(ejn) = \(\left\{ {\begin{array}{*{20}{c}} 1&{\left| \Omega \right| < w} \\ 0&{w\, < \,\,\left| \Omega \right| \leqslant π } \end{array}} \right.\)

Applying the formulae for inverse DTFT we get

x[n] = \(\frac{1}{{2π }}\int\limits_{ - π }^π { \times \left( {{e^{j\Omega }}} \right)} \,\,{e^{j\Omega n}}\,d\Omega \)

        = \(\frac{1}{{2π }}\int\limits_{ - w}^w {{e^{j\Omega n}}\,d\Omega } \,\,\)

       = \(\frac{{{e^{j\Omega n}}}}{{2π jn}}\int_{ - w}^w {} = \,\frac{{{e^{jwn}} - {e^{ - jwn}}}}{{\left( {2j} \right)π n}}\,\, = \,\,\frac{{\sin \,(wn)}}{{π n}}\)

Converting into sinc function:   

x[n] = \(\frac{sin(Wn)}{Wn} .\frac{Wn}{πn}\) = \(\frac{{\sin π \frac{{Wn}}{π }}}{{π \,.\frac{{Wn}}{π }}}\,\,.\,\,\frac{{π \frac{{Wn}}{π }}}{{π n}}\)

x [n] = \(\frac{w}{π} sinc(\frac{w}{π}n)\)

Latest UPSC IES Updates

Last updated on May 28, 2025

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More Discrete Fourier Transform (DFT) and Discrete Fourier Series (DFS) Questions

Get Free Access Now
Hot Links: teen patti game online teen patti casino teen patti stars