Find the unit vector perpendicular to the surface x2 + y2 – z2 = 11 at the point (4, 2, 3).

  1. 8î + 4ĵ -6k̂
  2. \(\frac{{4\widehat i + 2\widehat j - 3\widehat k}}{{\sqrt {29} }}\)
  3. \(\frac{{8\widehat i +4\widehat j - 6\widehat k}}{{\sqrt {29} }}\)
  4. \(\frac{{4\widehat i - 2\widehat j - 3\widehat k-11}}{{\sqrt {116} }}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{{4\widehat i + 2\widehat j - 3\widehat k}}{{\sqrt {29} }}\)
Free
UP TGT Arts Full Test 1
7.3 K Users
125 Questions 500 Marks 120 Mins

Detailed Solution

Download Solution PDF

Given:

Surface is x2 + y2 – z2 = 11

At point (4, 2, 3)

Formula used:

Unit vector perpendicular to the surface at point 'n' given by \(\frac{\hat{n}}{\hat{|n|}}\)

Calculation:

\({\hat{|n|}} = \sqrt{4^2 + 2^2 + (-3)^2} = \sqrt{29}\)

∴ The unit vector perpendicular to the surface x2 + y2 – z2 = 11 at the point (4, 2, 3) = \(\frac{{4\widehat i + 2\widehat j - 3\widehat k}}{{\sqrt {29} }}\)

Latest UP TGT Updates

Last updated on Jul 14, 2025

-> The UP TGT Admit Card (2022 cycle) will be released in July 2025

-> The UP TGT Exam for Advt. No. 01/2022 will be held on 21st & 22nd July 2025.

-> The UP TGT Notification (2022) was released for 3539 vacancies.

-> The UP TGT 2025 Notification is expected to be released soon. Over 38000 vacancies are expected to be announced for the recruitment of Teachers in Uttar Pradesh. 

-> Prepare for the exam using UP TGT Previous Year Papers.

Get Free Access Now
Hot Links: teen patti club apk teen patti casino teen patti star