Projection of Vector on a line or direction MCQ Quiz in मराठी - Objective Question with Answer for Projection of Vector on a line or direction - मोफत PDF डाउनलोड करा

Last updated on Apr 18, 2025

पाईये Projection of Vector on a line or direction उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Projection of Vector on a line or direction एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Projection of Vector on a line or direction MCQ Objective Questions

Top Projection of Vector on a line or direction MCQ Objective Questions

Projection of Vector on a line or direction Question 1:

If \(A(1, 2, 0), B(2, 0, 1), C(-3, 0, 2)\) are the vertices of \(\triangle ABC\), then the length of the internal bisector of \(\angle BAC\) is

  1. \(3\sqrt{6}\)
  2. \(\frac{2\sqrt{14}}{3}\)
  3. \(6\sqrt{14}\)
  4. \(\frac{2\sqrt{6}}{3}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{2\sqrt{14}}{3}\)

Projection of Vector on a line or direction Question 1 Detailed Solution

Calculation

Given:

Vertices: \(A(1, 2, 0)\)\(B(2, 0, 1)\)\(C(-3, 0, 2)\)

1) Find the lengths of AB and AC:

\(AB = \sqrt{(2-1)^2 + (0-2)^2 + (1-0)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}\)

\(AC = \sqrt{(-3-1)^2 + (0-2)^2 + (2-0)^2} = \sqrt{16 + 4 + 4} = \sqrt{24} = 2\sqrt{6}\)

2) Let D be the point where the angle bisector of \(\angle BAC\) intersects BC.

By the angle bisector theorem, \(\frac{BD}{CD} = \frac{AB}{AC} = \frac{\sqrt{6}}{2\sqrt{6}} = \frac{1}{2}\)

3) Find the coordinates of D using the section formula:

\(D = \left( \frac{1(-3) + 2(2)}{1+2}, \frac{1(0) + 2(0)}{1+2}, \frac{1(2) + 2(1)}{1+2} \right) = \left( \frac{-3+4}{3}, \frac{0}{3}, \frac{2+2}{3} \right) = \left( \frac{1}{3}, 0, \frac{4}{3} \right)\)

4) Find the length of AD:

\(AD = \sqrt{\left( \frac{1}{3} - 1 \right)^2 + (0 - 2)^2 + \left( \frac{4}{3} - 0 \right)^2}\)

\(AD = \sqrt{\left( -\frac{2}{3} \right)^2 + (-2)^2 + \left( \frac{4}{3} \right)^2} = \sqrt{\frac{4}{9} + 4 + \frac{16}{9}}\)

\(AD = \sqrt{\frac{4 + 36 + 16}{9}} = \sqrt{\frac{56}{9}} = \frac{\sqrt{56}}{3} = \frac{2\sqrt{14}}{3}\)

∴ The length of the internal bisector of \(\angle BAC\) is \(\frac{2\sqrt{14}}{3}\).

Hence option 2 is correct

Projection of Vector on a line or direction Question 2:

If additive inverse vector of vector pi + 2j - 3k is the vector \(\rm (\sqrt{ab}i+\sqrt b j+\sqrt pk)\) then which of the following is true (a > 0) ?

  1. p = 9, b = 4, a = 3/2
  2. p = 9, b = 4, a = 81/4
  3. p = 3, b = 4, a = 81/2
  4. p = 9, b = 4, a = 9/2

Answer (Detailed Solution Below)

Option 2 : p = 9, b = 4, a = 81/4

Projection of Vector on a line or direction Question 2 Detailed Solution

Explanation:

The additive inverse vector of vector pi + 2j - 3k is

-pi - 2j + 3k

So, \(\rm (\sqrt{ab}i+\sqrt b j+\sqrt pk)\) = -pi - 2j + 3k

Comparing both sides

\(\sqrt{ab}=-p,\sqrt b =-2, \sqrt p=3\)

So, p = 9, b = 4

Putting in \(\sqrt{ab}=-p\) we get

\(\sqrt{4b}=-9\)

i.e., 4b = 91

i.e., b = 81/4

Hence p = 9, b = 4, a = 81/4

Option (2) is true.

Projection of Vector on a line or direction Question 3:

The magnitude of the projection of the vector \(2\hat{i}+3\hat{j}+\hat{k}\) on the vector perpendicular to the plane containing the vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+2\hat{j}+3\hat{k}\), is

  1. \(\dfrac{\sqrt{3}}{2}\)
  2. \(\sqrt{\dfrac{3}{2}}\)
  3. \(\sqrt{6}\)
  4. \(3\sqrt{6}\)

Answer (Detailed Solution Below)

Option 2 : \(\sqrt{\dfrac{3}{2}}\)

Projection of Vector on a line or direction Question 3 Detailed Solution

Vector perpendicular to plane containing the vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+2\hat{j}+3\hat{k}\) is parallel to vector

\(\therefore \) Required magnitude of projection \(\dfrac{|(2\hat{i}+3\hat{j}+\hat{k}).(\hat{i}-2\hat{j}+\hat{k})|}{|\hat{i}-2\hat{j}+\hat{k}|}\)

\(\dfrac{|2-6+1|}{\sqrt{6}}=\dfrac{3}{\sqrt{6}}=\sqrt{\dfrac{3}{2}}\)

Projection of Vector on a line or direction Question 4:

Let A(0, 3, -3), B(1, 1, 1) and C(2, 0, 3) be three points in space. Then the projection of \(\vec{AB}\) on \(\vec{AC}\) is equal to?

  1. \(\frac{26}{7}\)
  2. \(\frac{32}{7}\)
  3. \(\frac{34}{7}\)
  4. \(\frac{24}{7}\)
  5. \(\frac{20}{7}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{32}{7}\)

Projection of Vector on a line or direction Question 4 Detailed Solution

Concept Used:

Projection of vector \(a\) on \(b\) is \(\frac{(a.b)}{|b|}\)

Calculation

Given:

\(A(0, 3, -3)\)\(B(1, 1, 1)\)\(C(2, 0, 3)\)

\(AB = B - A = (1-0, 1-3, 1-(-3)) = (1, -2, 4)\)

\(AC = C - A = (2-0, 0-3, 3-(-3)) = (2, -3, 6)\)

\(AB . AC = (1 \times 2) + (-2 \times -3) + (4 \times 6) = 2 + 6 + 24 = 32\)

\(|AC| = \sqrt{2^2 + (-3)^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7\)

Projection of AB on AC = \(\frac{(AB . AC)}{|AC|} = \frac{32}{7}\)

\(\therefore\) Projection of AB on AC = \(\frac{32}{7}\)

Hence option 2 is correct

Projection of Vector on a line or direction Question 5:

The vector projection of \(\overline{AB}\) on \(\overline{CD}\), where

A ≡ (2, −3, 0), B ≡ (1, -4, -2), C ≡ (4, 6, 8) and D = (7, 0, 10), is

  1. \(\frac{1}{49}(3 \hat{i}-6 \hat{j}+2 \hat{k})\)
  2. \(\frac{1}{6}(-\hat{i}-\hat{j}-2 \hat{k})\)
  3. \(-\frac{1}{49}(3 \hat{i}-6 \hat{j}+2 \hat{k})\)
  4. \(-\frac{1}{6}(-\hat{\mathbf{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})\)

Answer (Detailed Solution Below)

Option 3 : \(-\frac{1}{49}(3 \hat{i}-6 \hat{j}+2 \hat{k})\)

Projection of Vector on a line or direction Question 5 Detailed Solution

Answer : 3

Solution :

\(\overline{\mathrm{AB}}=-\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}\)

\(\overline{\mathrm{CD}}=3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathbf{k}}\)

Vector projection of \( \overline{\mathrm{AB}}\) on \(\overline{\mathrm{CD}}\) 

\((\overline{\mathrm{AB}} \cdot \overline{\mathrm{CD}}) \frac{\overline{\mathrm{CD}}}{|\overline{\mathrm{CD}}|^2}\) 

\((-3+6-4) \frac{(3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})}{\left(\sqrt{3^2+(-6)^2+2^2}\right)^2}\) 

\(\frac{-1}{49}(3 \hat{i}-6 \hat{j}+2 \hat{k})\)

Projection of Vector on a line or direction Question 6:

If \(\vec a = 4\hat i + 6 \hat j\) and \(\vec b = 3 \hat j + 4 \hat k\) then the vector component of \(\vec a\) along \(\vec b\) is

  1. \(\frac{{18}}{{10\sqrt 3 }}(3j + 4k)\)
  2. \(\frac{{18}}{{25}}(3j + 4k)\)
  3. \(\frac{{18}}{{\sqrt 3 }}(3j + 4k)\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\frac{{18}}{{25}}(3j + 4k)\)

Projection of Vector on a line or direction Question 6 Detailed Solution

Concept:

Let \(\vec{u}~and~\vec{v}\) be two vectors. Then the vector component of the vector \(\vec{u}~on~\vec{v}\) is given by:

 \(\frac{\vec{u}\cdot ~\vec{v}}{\left| {\vec{v}} \right|}(\hat v) = \frac{\vec{u}\cdot ~\vec{v}}{\left| {\vec{v}} \right|^2}( \vec v)\)

Calculation:

Given:

\(\vec a = 4\hat i + 6 \hat j\) and \(\vec b = 3 \hat j + 4 \hat k\)

\(\vec a . \vec b=(4, 6, 0). (0, 3, 4)\)

\(\vec a . \vec b= 18\)

|\(\vec a\)| = √52 

\(|\vec b| = 5\) 

The component of vector a along b is \(\frac{{18}}{{25}}(3j + 4k)\)

Mistake PointsWe are asked to find the vector component of 'a' along 'b'. If the scalar component was asked, then there would have been only 5 in the denominator.

Projection of Vector on a line or direction Question 7:

Projection vector of \(\rm\vec{a}\) on \(\rm\vec{b}\) is

  1. \(\rm\left(\frac{\vec{a}.\vec{b}}{|\vec{b}|^2}\right) \vec{b}\)
  2. \(\rm\frac{\vec{a}.\vec{b}}{|\vec{b}|}\)
  3. \(\rm\frac{\vec{a}.\vec{b}}{|\vec{a}|}\)
  4. \(\rm\left(\frac{\vec{a}.\vec{b}}{|\vec{a}|^2}\right) \hat{b}\)

Answer (Detailed Solution Below)

Option 2 : \(\rm\frac{\vec{a}.\vec{b}}{|\vec{b}|}\)

Projection of Vector on a line or direction Question 7 Detailed Solution

Explanation:

The projection vector of \(\rm\vec{a}\) on \(\rm\vec{b}\) is given by \(\rm\frac{\vec{a}.\vec{b}}{|\vec{b}|}\).

The correct answer is option 2.

Projection of Vector on a line or direction Question 8:

The projection of vector \(\rm\vec{a}\) = 2î − ĵ + k̂ along \(\rm\vec{b}\) = î + 2ĵ + 2k̂ is

  1. \(\frac{2}{3}\)
  2. \(\frac{1}{3}\)
  3. 2
  4. \(\sqrt{6}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{2}{3}\)

Projection of Vector on a line or direction Question 8 Detailed Solution

Concept:

The projection of vector \(\rm\vec{a}\)  on \(\rm\vec{b}\) is given by \(\frac{\rm\vec{a}⋅\rm\vec{b}}{|\vec b|}\).

Calculation:

Given  \(\rm\vec{a}\) = 2î − ĵ + k̂  and  \(\rm\vec{b}\) = î + 2ĵ + 2k̂

 \(\vec a\cdot \vec b\) = ( 2î − ĵ + k̂ )⋅ ( î + 2ĵ + 2k̂ )

= 2 × 1 + (-1) × 2 + 1 × 2 

= 2 - 2 + 2

= 2

|\(\rm\vec{b}\)| = | î + 2ĵ + 2k̂ |

\(\sqrt{1^2+2^2+2^2}\)

\(\sqrt{1+4+4}=\sqrt 9\) 

= 3

The projection of vector \(\rm\vec{a}\)  on \(\rm\vec{b}\)  = \(\frac{\rm\vec{a}⋅\rm\vec{b}}{|\vec b|}\).

\(\frac{2}{3}\)

The projection of vector \(\rm\vec{a}\) = 2î − ĵ + k̂ along \(\rm\vec{b}\) = î + 2ĵ + 2k̂ is 2/3.

The correct answer is option 1.

Projection of Vector on a line or direction Question 9:

The magnitude of the projection of the vector 2î + 3ĵ + k̂ on the vector perpendicular to the plane containing the vectors î + ĵ + k̂ and î + 2ĵ + 3k̂, is

  1. \(\frac{{\sqrt 3 }}{2}\)
  2. \(\sqrt{\frac{3}{2}}\)
  3. \(\sqrt{6}\)
  4. \(3\sqrt{6}\)

Answer (Detailed Solution Below)

Option 2 : \(\sqrt{\frac{3}{2}}\)

Projection of Vector on a line or direction Question 9 Detailed Solution

Concept -

Use of normal vector  and projection vector

projection of \(\overrightarrow{a}\) on \(\overrightarrow{b}\) is \(= | \frac{\overrightarrow{a}.\overrightarrow{b} }{|\overrightarrow{b}|}|\)

Solution

Normal vector to the plane to plane containing \(\hat{i} + \hat{j}+\hat{k}\) and \(\hat{i} + 2\hat{j}+3\hat{k}\) is 

\(\overrightarrow{n}=\left ( \hat{i} + \hat{j}+\hat{k} \right )\times (\hat{i} + 2\hat{j}+3\hat{k})\)

 \(\overrightarrow{n}=\left ( \hat{i} -2 \hat{j}+\hat{k} \right )\)

Projection of \(\left ( 2\hat{i} +3 \hat{j}+\hat{k} \right )\) on \(\overrightarrow{n}\) = \(= | \frac{\left ( 2\hat{i} +3 \hat{j}+\hat{k} \right ).\left ( \hat{i} -2 \hat{j}+\hat{k} \right )}{\sqrt{1+4+1}}|\)

\(\frac{3}{\sqrt{6}}= \sqrt{\frac{3}{2}}\)

Hence the final answer is option 2.

Get Free Access Now
Hot Links: teen patti winner teen patti palace teen patti bodhi