Space Charge Region MCQ Quiz in मल्याळम - Objective Question with Answer for Space Charge Region - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 16, 2025

നേടുക Space Charge Region ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Space Charge Region MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Space Charge Region MCQ Objective Questions

Top Space Charge Region MCQ Objective Questions

Space Charge Region Question 1:

A silicon PN junction at T = 300 K with a p-type doping concentration of \({{\rm{N}}_{\rm{a}}} = {10^{18}}{\rm{c}}{{\rm{m}}^{ - 3}}\). For a maximum electric field of \(\left| {{{\rm{E}}_{{\rm{max}}}}} \right| = 3 \times {10^5}\frac{{\rm{V}}}{{{\rm{cm}}}}\) at a reverse bias \({{\rm{V}}_{\rm{R}}} = 25{\rm{V}}\), the n-type doping concentration \(\left( {{\rm{in\;}}{{10}^{16}}{\rm{c}}{{\rm{m}}^{ - 3}}} \right)\) is approximately ___________.

Given, \({\epsilon_{\rm{s}}} = 11.7 \times 8.854 \times {10^{ - 14}}\frac{{\rm{F}}}{{{\rm{cm}}}}\) 

Answer (Detailed Solution Below) 1 - 1.3

Space Charge Region Question 1 Detailed Solution

The maximum electric field is given by

\(\begin{array}{l} {{\rm{E}}_{{\rm{max}}}} = \frac{{ - 2\left( {{{\rm{V}}_{{\rm{bi}}}} + {{\rm{V}}_{\rm{R}}}} \right)}}{{\rm{W}}}\\ \Rightarrow {{\rm{E}}_{{\rm{max}}}} = - {\left\{ {\frac{{2{\rm{q}}\left( {{{\rm{V}}_{{\rm{bi}}}} + {{\rm{V}}_{\rm{R}}}} \right)}}{{{\epsilon_{\rm{s}}}}}\left( {\frac{{{{\rm{N}}_{\rm{a}}}{{\rm{N}}_{\rm{d}}}}}{{{{\rm{N}}_{\rm{a}}} + {{\rm{N}}_{\rm{d}}}}}} \right)} \right\}^{\frac{1}{2}}} \end{array}\)

Now, \({{\rm{V}}_{{\rm{bi}}}}\) is usually less than \(1{\rm{\;and\;}}{{\rm{V}}_{\rm{R}}} = 25\)

So, we may approximate \({{\rm{E}}_{{\rm{max}}}}\) as

\(\begin{array}{l} {{\rm{E}}_{{\rm{max}}}} \approx - {\left\{ {\frac{{2{\rm{q}}{{\rm{V}}_{\rm{R}}}}}{{{\epsilon_{\rm{s}}}}}\left( {\frac{{{{\rm{N}}_{\rm{a}}}{{\rm{N}}_{\rm{d}}}}}{{{{\rm{N}}_{\rm{a}}} + {{\rm{N}}_{\rm{d}}}}}} \right)} \right\}^{\frac{1}{2}}}\\ \Rightarrow \left| {{{\rm{E}}_{{\rm{max}}}}} \right| = {\left\{ {\frac{{2{\rm{q}}{{\rm{V}}_{\rm{R}}}}}{{{\epsilon_{\rm{s}}}}}\left( {\frac{{{{\rm{N}}_{\rm{a}}}{{\rm{N}}_{\rm{d}}}}}{{{{\rm{N}}_{\rm{a}}} + {{\rm{N}}_{\rm{d}}}}}} \right)} \right\}^{\frac{1}{2}}}\\ \Rightarrow 3 \times {10^5} = {\left\{ {\frac{{2\left( {1.6 \times {{10}^{ - 19}}} \right)\left( {25} \right)}}{{\left( {11.7} \right)\left( {8.854 \times {{10}^{ - 14}}} \right)}}\left( {\frac{{{{10}^{18}} \cdot {{\rm{N}}_{\rm{d}}}}}{{{{10}^{18}} + {{\rm{N}}_{\rm{d}}}}}} \right)} \right\}^{\frac{1}{2}}}\\ \Rightarrow 9 \times {10^{10}} = 7.723 \times {10^{ - 6}}\left( {\frac{{{{10}^{18}}{{\rm{N}}_{\rm{d}}}}}{{{{10}^{18}} + {{\rm{N}}_{\rm{d}}}}}} \right)\\ = 9 \times {10^{28}} + 9 \times {10^{10}}{{\rm{N}}_{\rm{d}}} = 7.723 \times {10^{12}}{{\rm{N}}_{\rm{d}}}\\ \Rightarrow {{\rm{N}}_{\rm{d}}} = \frac{{9 \times {{10}^{28}}}}{{\left( {7.723 - 0.09} \right) \times {{10}^{12}}}} = 1.18 \times {10^{16}}{\rm{c}}{{\rm{m}}^{ - 3}} \end{array}\)

Space Charge Region Question 2:

Comprehension:

Common Data for Questions 19 and 20 :

Consider a silicon p – n junction at room temperature having the following parameters :

Doping of the n – side = 1 × 1017 cm-3

Depletion width on the n – side = 0.1 μm

Depletion width on the p – side = 1.0 μm

Intrinsic carrier concentration = 1.4 × 1010 cm-3

Thermal voltage = 26 mV

Permittivity of free space = 8.85 × 10-14F ⋅ cm-1

Dielectric constant of silicon = 12

The peak electric field in the device is:

  1. 0.15 MV. cm-1, directed from p-region to n – region

  2. 0.15 MV. cm-1, directed from n-region to p – region

  3. 1.80 MV. cm-1, directed from p-region to n – region
  4. 1.80 MV. cm-1, directed from n-region to p – region

Answer (Detailed Solution Below)

Option 2 :

0.15 MV. cm-1, directed from n-region to p – region

Space Charge Region Question 2 Detailed Solution

\({E_{max}} = \frac{{e{N_A}}}{{{\epsilon_{si}}}}{x_p} = \frac{{1.6 \times {{10}^{ - 19}} \times {{10}^{16}} \times 1 \times {{10}^{ - 4}}}}{{12 \times 8.85 \times {{10}^{ - 14}}}} = 0.15\;MV/c{m^{ - 1}}\)

The direction of electric field in a PN junction is always from  N side to P side.

Space Charge Region Question 3:

Comprehension:

Common Data for Questions 19 and 20 :

Consider a silicon p – n junction at room temperature having the following parameters :

Doping of the n – side = 1 × 1017 cm-3

Depletion width on the n – side = 0.1 μm

Depletion width on the p – side = 1.0 μm

Intrinsic carrier concentration = 1.4 × 1010 cm-3

Thermal voltage = 26 mV

Permittivity of free space = 8.85 × 10-14F ⋅ cm-1

Dielectric constant of silicon = 12

The built–in potential of the junction

  1. is 0.70 V
  2. is 0.76 V
  3. is 0.82 V
  4. cannot be estimated from the data given

Answer (Detailed Solution Below)

Option 2 : is 0.76 V

Space Charge Region Question 3 Detailed Solution

From charge neutrality we have,

            \({N_A}{x_p} = {N_D}{x_n}\)

            or, \({N_A} = {N_D}.\frac{{{x_n}}}{{{x_p}}}\)

            or, \({N_A} = {10^{17}}.\frac{{0.1}}{{1.0}}\)

            ∴\({N_A} = {10^{16}}\)

            ∴\({V_{bi}} = {V_T}\ln \left( {\frac{{{N_A}{N_D}}}{{n_i^2}}} \right)\)

            \( = 26 \times {10^{ - 3}} \times \ln \left[ {\frac{{{{10}^{17}} \times {{10}^{16}}}}{{{{\left( {1.4 \times {{10}^{10}}} \right)}^2}}}} \right]\)

            = 0.761 V

Get Free Access Now
Hot Links: teen patti pro teen patti neta teen patti circle teen patti master update teen patti classic