Polynomial Rings and Irreducibility Criteria MCQ Quiz in मल्याळम - Objective Question with Answer for Polynomial Rings and Irreducibility Criteria - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 18, 2025

നേടുക Polynomial Rings and Irreducibility Criteria ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Polynomial Rings and Irreducibility Criteria MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Polynomial Rings and Irreducibility Criteria MCQ Objective Questions

Top Polynomial Rings and Irreducibility Criteria MCQ Objective Questions

Polynomial Rings and Irreducibility Criteria Question 1:

Which of the following is/are true?  

  1. The polynomial x2 + x + 1 is irreducible in ℤ2[x].
  2. The polynomial x2 - 2 is irreducible in ℚ[x].
  3. The polynomial x3 + 3x − 2π is irreducible in 
  4. The polynomial \(1+x+\frac{x^2}{2 !}+\cdots+\) \(\frac{x^{101}}{101 !}\) is irreducible in [x].

Answer (Detailed Solution Below)

Option :

Polynomial Rings and Irreducibility Criteria Question 1 Detailed Solution

Solution -  

Option 1) 

Given, polynomial \(x^2+x+1\) has no root in \(Z_2\) 

so it is irreducible .

Option 2) 

Given, polynomial \(x^2 - 2\) has no root in Q 

so it is irreducible 

Option 3) 

As every polynomial of odd degree 

has atleast one real root in R so it is reducible.

Option 4) 

\(1+x+\frac{x^2}{2 !}+\cdots+ \frac{x^{101}}{101!}\)

\(\frac{x^{101}+101x^{100}+....+101!}{101!}\)

let q(x) = \(x^{101}+101x^{100}+...+ 100! \) 

taking p= 101 here p divides \(a_o,a_1, a_{n-1} \ and \ p \ does \ not \ divide \ a_n, a_o\) 

then , By einstein Criteria Q[x] is irreducible polynomial. 

Therefore, Correct Option (s) are Option 1), 2) and 4).

Get Free Access Now
Hot Links: teen patti star apk happy teen patti all teen patti teen patti bonus