Trigonometric elements MCQ Quiz - Objective Question with Answer for Trigonometric elements - Download Free PDF

Last updated on Jun 29, 2025

Latest Trigonometric elements MCQ Objective Questions

Trigonometric elements Question 1:

If A2+B2+C2=0, then what is the value of the following?

  1. -1
  2. 0
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 2 : 0

Trigonometric elements Question 1 Detailed Solution

Concept:

When A2 + B2 + C2 = 0, it implies A = B = C = 0 (since the squares of real numbers are non-negative).

Substitute the values of A, B, and C for determinant calculation into the matrix

Calculation:

Since, Cos0 =1

Thus Matrix becomes 

Now determinant = 1[(1×1 - 1×1)] - 1[(1×1 - 1×1)] + 1[(1×1 - 1×1)]

= = 1(0) - 1(0) + 1(0) = 0

∴ The value of the determinant is 0.

Hence, the correct answer is Option 2.

Trigonometric elements Question 2:

∫ Sin mx cos nx =?

  1. 1/2sin(m)-Cos(n)x
  2. (m+n)x
  3. 1/2sin(m+n)x
  4. ½[sin(m+n)x + sin(m-n)x]

Answer (Detailed Solution Below)

Option 4 : ½[sin(m+n)x + sin(m-n)x]

Trigonometric elements Question 2 Detailed Solution

Given:

Integral: ∫Sin(mx) × Cos(nx) dx

Concept Used:

The trigonometric product-to-sum formula is used here:

Sin(A) × Cos(B) = 1/2 × [Sin(A+B) + Sin(A-B)]

Calculation:

Using the formula:

Sin(mx) × Cos(nx) = 1/2 × [Sin(mx + nx) + Sin(mx - nx)]

Substituting values:

⇒ Sin(mx) × Cos(nx) = 1/2 × [Sin((m+n)x) + Sin((m-n)x)]

Comparing this result with the given options, the correct answer is:

Option 4: 1/2[Sin(m+n)x + Sin(m-n)x]

Conclusion:

∴ The solution satisfies the formula, and the correct answer is Option 4.

Trigonometric elements Question 3:

Let A =  and P = , θ > 0. If B = PAPT, C = PTB10P and the sum of the diagonal elements of C is , where gcd(m, n) = 1, then m + n is :

  1. 65 
  2. 127 
  3. 258 
  4. 2049 

Answer (Detailed Solution Below)

Option 1 : 65 

Trigonometric elements Question 3 Detailed Solution

Calculation

∵ PT P = I

B = PAPT 

Pre multiply by PT (Given)

PTB = PTP APT = APT

Now post multiply by P

PTBP = APT P = A 

So A2

A2 = PTB2 P

Similarly A10 = PTB10 P = C 

⇒ 

Similarly check A3 and so on since C = A10

⇒ Sum of diagonal elements of C is 

g cd(m, n) = 1 (Given) 

⇒ m + n = 65

Hence option 1 is correct

Trigonometric elements Question 4:

Let . Then

  1. Δ s independent of θ 
  2. Δ is independent of φ
  3. Δ is a constant

Answer (Detailed Solution Below)

Option :

Trigonometric elements Question 4 Detailed Solution

Calculation

Expanding through R₃ we get

Independent of

Also,

Therefore,

at

Hence option 2 and 4 are correct

Trigonometric elements Question 5:

Let  and A + AT - 2I = 0, where AT is the transpose of A and I is the identity matrix. The value of 𝜃 (in degrees) is ________.

Answer (Detailed Solution Below) 90

Trigonometric elements Question 5 Detailed Solution

The correct option is: 90 

Explanation: We start with the matrix ( A ) and the given equation ( A + AT - 2I = 0 ).

Given:

  • First, determine the transpose of ( A ):
  • Next, add ( A ) and ( AT ): [ A + AT =
  • Now, subtract ( 2I ) from ( A + AT ):
  • Set ( A + AT - 2I ) equal to the zero matrix:
  • This results in the following equations:
  • Solving these gives:
  • The only angle that satisfies both equations is

Thus, the value of (θ) is 90.

Top Trigonometric elements MCQ Objective Questions

If A =  then |A| =?

  1. sin 2θ 
  2. cos 2θ 
  3. cos2 θ
  4. 1

Answer (Detailed Solution Below)

Option 2 : cos 2θ 

Trigonometric elements Question 6 Detailed Solution

Download Solution PDF

Concept:

cos2 θ - sinθ = cos 2θ

Calculation:

Given: A =  

|A| = cos θ × cos θ - sin θ × sin θ

= cos2 θ - sinθ

= cos 2θ

If  then what is the value of the determinant of m sinθ + n cosθ 

  1. 1
  2. -1
  3. 3
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Trigonometric elements Question 7 Detailed Solution

Download Solution PDF

Calculation: 

m sinθ + n cosθ = sin θ  + cos θ 

+

Now,

|m sinθ + n cosθ| = 

 + 

= 2()

= 2

Hence, option (4) is correct. 

What is the value of the following determinant?

  1. -1
  2. 0
  3. 2tan A sin B sin C
  4. -2tan A sin B sin C

Answer (Detailed Solution Below)

Option 2 : 0

Trigonometric elements Question 8 Detailed Solution

Download Solution PDF

Formula used:

det(A) = 

= a1(b2 c3 - b3 c2) - a2(b1c3 - b3c1) + a3 (b1c2 - b2c1)

Calculation:

= cos C (0 + tan A sin B) - tan A (sin B cos C) 

= tan A sin B cos C - tan A sin B cos C

= 0

The maximum value of ∆ =  is (θ is real number)

Answer (Detailed Solution Below)

Option 1 :

Trigonometric elements Question 9 Detailed Solution

Download Solution PDF

Explanation:

We have, Δ =  

Applying R→  R1 - R2 we get,

Δ = 

Expanding Δ along row R1

⇒ Δ = 0 - (-sinθ)(1 - 1 - cosθ) + 0

⇒ Δ =  - (-sinθ)(- cosθ)

⇒ Δ = -sinθcosθ

⇒ Δ =  

⇒ Δ =    (∵ 2 sin θ cos θ = sin 2θ )

Now, Δ will be maximum when sin2θ will be minimum.

Minimum value of sin2θ = - 1

∴ Maximum value of Δ = ( -1/2) ×  ( -1) = 1/2

Answer (Detailed Solution Below)

Option 2 : cos 2x

Trigonometric elements Question 10 Detailed Solution

Download Solution PDF

Calculation:

A = 

A = cos2 x - sin2 x

A = cos 2x

If x, y ∈ R, then the determinant 

∆ =  lies in the interval

  1. [−√2, √2]
  2. [−1, 1]
  3. [−√2, 1]
  4. [−1, −√2]

Answer (Detailed Solution Below)

Option 1 : [−√2, √2]

Trigonometric elements Question 11 Detailed Solution

Download Solution PDF

Concept: For x,y ∈ R:

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y - sin x sin y

Explanation:

We have Δ = 

⇒ Δ = 

Applying R3 → R3 - cosyR1 - sinyR2 

⇒ Δ = 

Expanding along row R3,

⇒ Δ = 0 - 0 + (sin y - cos y)(sin2x + cos2x)

⇒ Δ = sin y - cos y  (∵ sin2x + cos2x = 1)

⇒ Δ = √2[sin y - cos y]

⇒ Δ = √2[ ]

⇒ Δ = √2[sin(y - )]

Now -1 ≤ sin(y - ) ≤ 1

⇒ -√2 ≤ √2 sin(y - ) ≤ √2

∴ Δ ∈ [-√2, √2]

Answer (Detailed Solution Below)

Option 4 : 1

Trigonometric elements Question 12 Detailed Solution

Download Solution PDF

CONCEPT:

  • sin A cos B + sin B cos A = sin (A + B)
  • If is a square matrix of order 2, then determinant of A is given by |A| = (a­11 × a22) – (a12 – a21)


CALCULATION:

Given: 

As we know that, if  is a square matrix of order 2, then determinant of A is given by |A| = (a­11 × a22) – (a12 – a21)

⇒ 

As we know that, sin A cos B + sin B cos A = sin (A + B)

⇒ k = sin 90° = 1

Hence, the correct option is 4.

Answer (Detailed Solution Below)

Option 2 : 1

Trigonometric elements Question 13 Detailed Solution

Download Solution PDF

Calculation:

Let Δ = 

= sec2 x - tan2 x

= 1 + tan2 x -  tan2 x       [∵ 1 + tan2 x = sec2 x]

= 1 

Answer (Detailed Solution Below)

Option 2 : 1

Trigonometric elements Question 14 Detailed Solution

Download Solution PDF

Calculation:

Let Δ = 

= sec2 x - tan2 x

= 1 + tan2 x -  tan2 x       [∵ 1 + tan2 x = sec2 x]

= 1 

Find the determinant of  . 

  1. 1
  2. xsin2θ 
  3. x2
  4. -x3

Answer (Detailed Solution Below)

Option 4 : -x3

Trigonometric elements Question 15 Detailed Solution

Download Solution PDF

Concept :

A=  

Then determinant of matrix A , | A | = = a11 × {(a22 × a33) – (a23 × a32)} - a12 × {(a21 × a33) – (a23 × a31)} + a13 × {(a21 × a32) – (a22 × a31)} . 

Calculation:

⇒ Δ =  

⇒ Δ =  

⇒ Δ =  

⇒ Δ =                

 Δ = - x3                                        [∵ sin2 θ + cos2 θ = 1]

The correct option is 4.

Hot Links: teen patti master 51 bonus teen patti master game teen patti royal - 3 patti