Discrete Time Fourier Transform (DTFT) MCQ Quiz - Objective Question with Answer for Discrete Time Fourier Transform (DTFT) - Download Free PDF

Last updated on Mar 21, 2025

Latest Discrete Time Fourier Transform (DTFT) MCQ Objective Questions

Discrete Time Fourier Transform (DTFT) Question 1:

The discrete-time Fourier transform is always periodic in ω with period: 

  1. 2π
  2. π
  3. π/2

Answer (Detailed Solution Below)

Option 2 : 2π

Discrete Time Fourier Transform (DTFT) Question 1 Detailed Solution

Explanation:

Discrete-Time Fourier Transform (DTFT)

Definition: The discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of values, typically a function of time. The DTFT is used to analyze the frequency content of discrete signals. It transforms a sequence of discrete-time signals into a continuous function of frequency.

Mathematical Representation: The DTFT of a sequence \( x[n] \) is defined as:

\( X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \)

where:

  • \( x[n] \) is the discrete-time signal.
  • \( \omega \) is the normalized angular frequency (in radians per sample).
  • \( j \) is the imaginary unit.

Periodicity of the DTFT: One of the key properties of the DTFT is its periodicity. The DTFT is always periodic in \( \omega \) with a period of \( 2\pi \). This means that:

\( X(\omega + 2\pi) = X(\omega) \)

This periodicity arises due to the nature of discrete-time signals, which are inherently sampled. The Nyquist-Shannon sampling theorem indicates that the highest frequency that can be uniquely represented by a sampled signal is half the sampling rate, leading to a periodicity in the frequency domain.

Correct Option Analysis:

The correct option is:

Option 2: \( 2\pi \)

This option correctly identifies that the DTFT is periodic in \( \omega \) with a period of \( 2\pi \). This periodicity is a fundamental characteristic of the DTFT and is crucial for understanding the frequency representation of discrete-time signals.

Additional Information

To further understand the analysis, let’s evaluate the other options:

Option 1: \( 4\pi \)

This option is incorrect because the DTFT is not periodic with a period of \( 4\pi \). The correct periodicity is \( 2\pi \), as discussed above.

Option 3: \( \pi \)

This option is incorrect because \( \pi \) is not the period of the DTFT. While \( \pi \) is half the period of \( 2\pi \), it does not represent the full periodicity of the DTFT.

Option 4: \( \pi/2 \)

This option is incorrect as well. \( \pi/2 \) is a quarter of the period \( 2\pi \) and does not represent the periodicity of the DTFT.

Conclusion:

Understanding the periodicity of the DTFT is essential for analyzing the frequency content of discrete-time signals. The DTFT is always periodic in \( \omega \) with a period of \( 2\pi \), which is a fundamental property derived from the nature of discrete-time signals. This periodicity allows for the analysis and representation of signals in the frequency domain, providing insights into their spectral characteristics.

Discrete Time Fourier Transform (DTFT) Question 2:

Let an input 𝑥[𝑛] having discrete time Fourier transform

𝑋(𝑒𝑗𝛺) = 1 − 𝑒−𝑗𝛺 + 2𝑒−3𝑗𝛺 be passed through an LTI system. The frequency response of the LTI system is \(\rm H(e^{j\Omega)}=1-\frac{1}{2}e^{-j2\Omega}\). The output 𝑦[𝑛] of the system is

  1. \(\rm \delta[n]+\delta[n-1]-\frac{1}{2}\delta[n-2]-\frac{5}{2}\delta[n-3]+\delta[n-5]\)
  2. \(\rm \delta[n]-\delta[n-1]-\frac{1}{2}\delta[n-2]-\frac{5}{2}\delta[n-3]+\delta[n-5]\)
  3. \(\rm \delta[n]-\delta[n-1]-\frac{1}{2}\delta[n-2]+\frac{5}{2}\delta[n-3]-\delta[n-5]\)
  4. \(\rm \delta[n]+\delta[n-1]+\frac{1}{2}\delta[n-2]+\frac{5}{2}\delta[n-3]+\delta[n-5]\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \delta[n]-\delta[n-1]-\frac{1}{2}\delta[n-2]+\frac{5}{2}\delta[n-3]-\delta[n-5]\)

Discrete Time Fourier Transform (DTFT) Question 2 Detailed Solution

The correct option is 3

Given:  𝑦[𝑛]  = x[n] ∗ h[n] 

We know that the convolution in one domain results in convolution in another domain.

Y(𝑒𝑗𝛺) =𝑋(𝑒𝑗𝛺) H(𝑒𝑗𝛺

= (1 − 𝑒−𝑗𝛺 + 2𝑒−3𝑗𝛺)(\(1-\frac{1}{2}e^{-j2\Omega}\))

=1 - 𝑒−𝑗𝛺 + 2.5𝑒−3𝑗𝛺 - 0.5𝑒−2𝑗𝛺 - 𝑒−5𝑗𝛺

Taking IDFT we have:

y[n] =\(\rm \delta[n]-\delta[n-1]-\frac{1}{2}\delta[n-2]+\frac{5}{2}\delta[n-3]-\delta[n-5]\)

Discrete Time Fourier Transform (DTFT) Question 3:

discrete time signal x[n] = {1, 2, 3, 0, −3, −2, −1} is having a discrete-time Fourier transform X(e). The value of \(\int_{−\pi}^{\pi}\)|X(e)|2 dΩ is:

  1. 28
  2. 28 π
  3. 56 π
  4. 14

Answer (Detailed Solution Below)

Option 3 : 56 π

Discrete Time Fourier Transform (DTFT) Question 3 Detailed Solution

Explanation:

Summation property of discrete-time Fourier transform:

The summation of the discrete time signal x[n] is given by:

\(\int_{−π}^{π} |X(e^{j\Omega})|^2d\Omega\) = [π - (-π )] × {12 + 22 + 32 + (-1)2 + (-2)+ (-3)2}

\(\int_{−π}^{π} |X(e^{j\Omega})|^2d\Omega\) = 2π × 28

\(\int_{−π}^{π} |X(e^{j\Omega})|^2d\Omega=56\pi\)

Discrete Time Fourier Transform (DTFT) Question 4:

Let x[n] be a discrete time sequence given by x[n] = {1, 2, 3, 0, −3, −2, −1}, where x[0] is 1. The value of X(e) is:

  1. 1
  2. 0
  3. 6
  4. 1/7

Answer (Detailed Solution Below)

Option 2 : 0

Discrete Time Fourier Transform (DTFT) Question 4 Detailed Solution

 Given discrete time sequence x[n] = {1, 2, 3, 0, −3, −2, −1} , where x[0] is 1.

 To calculate the value of \(X(e^{jπ})\)

The DTFT of a sequence x[n] is defined as:

 

X(e) = \(\sum_{n = - \infty}^ \infty x[n] e^{-jω n}\)

The DTFT X(e) is a function of frequency

x[n] = {1, 2, 3, 0, -3, -2, -1}

L = 7, n = 0 to (7 - 1)

X(e) = \(\sum_{n = 0}^6 x[n] e^{-jω n}\)

X(e) = x[0] + x[1]e-jω + x[2]e-j2 + x[3]e-j3 + x[4]e-j4 + x[5]e-j5 +x[6]e-j6

= 1 + 2e-jω + 3e-j2ω + 0 - 3e-j4ω - 2e-j5ω - 1e-j6ω 

= 1 - e-j6ω + 2[e-jω - e-j5ω ] + 3[e-j2ω - e-j4ω ]

X(e) = 1 - e-j6π + 2[e-jπ - e-j5π] + 3[e-j2π - e-j4π]  

e-j6π = cos6π - isin6π = 1

e-jπ = cosπ - isinπ = -1

e-j5π = cos5π - isin5π = -1

e-j2π = cos2π - isin2π = 1

e-j4π = cos4π - isin4π = 1

X(ejπ) = 1 - 1 + 2[-1 - (-1)] + 3 [1 - 1] 

= 0 + [-1 + 1] + 3[0]

=0

Discrete Time Fourier Transform (DTFT) Question 5:

Let \(x\left( n \right)={{\left( \dfrac{1}{2} \right)}^{n}}u\left( n \right),~y\left( n \right)={{x}^{2}}(n)\) and Y(e) to be the Fourier transform of y(n) then Y(ej0)

Answer (Detailed Solution Below) 1.2 - 1.4

Discrete Time Fourier Transform (DTFT) Question 5 Detailed Solution

Concept:

The Fourier transform for a discrete time sequence y[n] is given by:

\(Y\left( {{e^{j\omega }}} \right) = \;\mathop \sum \limits_{n = - \infty }^\infty y\left( n \right){e^{ - j\omega n}}\)

Analysis:

\(x\left( n \right)={{\left( \dfrac{1}{2} \right)}^{n}}u\left( n \right)\)

\(y\left( n \right)={{x}^{2}}\left( n \right)={{\left( \dfrac{1}{2} \right)}^{2n}}{{u}^{2}}\left( n \right)\)

\(={{\left[ {{\left( \dfrac{1}{2} \right)}^{2}} \right]}^{n}}{{u}^{2}}\left( n \right)\)

\(={{\left( \dfrac{1}{4} \right)}^{n}}u\left( n \right)\)

The Fourier transform of the above signal will now be:

\(Y(e^{j\omega })= \mathop \sum \limits_{n\; = \;0}^\infty {\left( {\dfrac{1}{4}} \right)^n}{e^{ - j\omega n}}\)

\(Y\left( {{e^{j0}}} \right) = \mathop \sum \limits_{n = 0}^\infty {\left( {\dfrac{1}{4}} \right)^n} \)

\(= 1 + \dfrac{1}{4} + {\left( {\dfrac{1}{4}} \right)^2} + \ldots \; \)

\(= \dfrac{1}{{1 - \dfrac{1}{4}}} = \dfrac{4}{3}\)

Top Discrete Time Fourier Transform (DTFT) MCQ Objective Questions

What is the discrete-time Fourier transform (DTFT) of the sequence given: x[n] = αnu[n], α < 1?

  1. \(\frac{1}{{1 - \alpha {e^{ - j\omega }}}}\)
  2. \(\frac{1}{{1 - \alpha {e^{j\omega }}}}\)
  3. \(\frac{\alpha }{{1 - \alpha {e^{ - j\omega }}}}\)
  4. \(\frac{\alpha }{{1 + \alpha {e^{j\omega }}}}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{{1 - \alpha {e^{ - j\omega }}}}\)

Discrete Time Fourier Transform (DTFT) Question 6 Detailed Solution

Download Solution PDF

The Discrete-Time Fourier transform of a signal of infinite duration x[n] is given by

\(X\left( \omega \right) = DTFT\left\{ {x\left[ n \right]} \right\} = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j\omega n}}\)

Given signal is, x[n] = αn u[n]

\(X\left( \omega \right) = \mathop \sum \limits_{n = - \infty }^\infty {\alpha ^n}u\left[ n \right]{e^{ - j\omega n}}\)

\( = \mathop \sum \limits_{n = 0}^\infty {\left( {\alpha {e^{ - j\omega }}} \right)^n}\)

\( = \frac{1}{{1 - \alpha {e^{ - j\omega }}}}\)

In inverse DTFT, the limits of the integral is defined between -π to π because of the property

  1. Time invariance
  2. Periodicity
  3. Multiplication
  4. Implication

Answer (Detailed Solution Below)

Option 2 : Periodicity

Discrete Time Fourier Transform (DTFT) Question 7 Detailed Solution

Download Solution PDF

The extension of discrete Fourier series for discrete-time aperiodic signals gives discrete-time Fourier transform. The DTFT of a signal is periodic with a period of 2π. Therefore, all the information is contained in -π < ω < π. 

The discrete-time Fourier Transform of a sequence x(n) is given by:

\(X\left( ω \right) = \mathop \sum \limits_{ - ∞ }^∞ x\left( n \right){e^{ - jω n}}\)

Where ω is discrete-time frequency. Transform X(ω) is a frequency-domain description of x(n).

Thus x(n) and X(ω) make Fourier transform pairs.

x(n): Discrete Aperiodic

X(ω): Periodic Continuous

The inverse DTFT which maps the frequency domain X(ω) back into time is given as:

\(x\left( n \right)=\frac{1}{2π }\underset{-π }{\overset{π }{\mathop \int }}\,X\left( {{ω }} \right){{e}^{jω n}}dω\)

X(ω), the frequency domain representation is a continuous function of ω which can take any value over a continuous interval from - to +. Also, X(ω) is a periodic function of ω with period 2π it follows:

X(ω + 2π) = X(ω)

Consider the signals x[n] = 2n-1 u[-n + 2] and y[n] = 2-n+2 u[n + 1], where u[n] is the unit step sequence. Let X(e) and Y(e) be the discrete-time Fourier transform of x[n] and y[n], respectively. The value of the integral

\(\dfrac{1}{2\pi}\displaystyle\int_0^{2\pi} X(e^{j\omega}) Y(e^{-j\omega})d\omega\)

(rounded off to one decimal place) is _____  

Answer (Detailed Solution Below) 7.9 - 8.1

Discrete Time Fourier Transform (DTFT) Question 8 Detailed Solution

Download Solution PDF

Concept:

\(x\left[ n \right]*y\left[ n \right]\;\begin{array}{*{20}{c}} {\mathop \leftrightarrow \limits^{Fourier} }\\^{Transform} \end{array}X\left( {{e^{j\omega }}} \right)Y\left( {{e^{j\omega }}} \right)\)

Let z(n) = x(n) * y(n)

Then Z(e) = X(e) Y(e)

Also, using central ordinate theorem:

\(z\left[ 0 \right] = \frac{1}{{2\pi }}\mathop \smallint \nolimits_0^{2\pi } z\left( {{e^{j\omega }}} \right)d\omega \)

\( = \frac{1}{{2\pi }}\mathop \smallint \nolimits_0^{2\pi } X\left( {{e^{j\omega }}} \right)Y\left( {{e^{j\omega }}} \right)d\omega \)

Application:

x[n] = 2n-1 u[-n + 2]

y[n] = 2-n+2  u[n + 1]

Given:

\(\frac{1}{{2\pi }}\mathop \smallint \nolimits_0^{2\pi } X\left( {{e^{j\omega }}} \right)\;y\left( {{e^{ - j\omega }}} \right)d\omega \)

If y(n) = y(e)

Then, using time reversal property:

y[-n] = y(e-jω)

Hence z[n] = x[n] * y[-n]

z[n] = [2n-1u[-n + 2]] * [2n+2u[-n + 1]]

\(z\left[ n \right] = \mathop \sum \nolimits_{k = - \infty }^\infty {2^{k - 1}}\;u\left[ { - k + 2} \right] \cdot {2^{n - k + 2}}\;u\left[ { - n + k + 1} \right]\)

\(z\left[ n \right] = \mathop \sum \nolimits_{k = - \infty }^2 {2^{k - 1}} \cdot {2^{n - k + 2}}\;u\left[ { - n + k + 1} \right]\)

\(z\left[ n \right] = \mathop \sum \nolimits_{k = - \infty }^2 {2^{k - 1 + n - k + 2}}\;u\left[ { - n + k + 1} \right]\)

\(z\left[ n \right] = \mathop \sum \nolimits_{k = - \infty }^2 {2^{n + 1}}\;u\left[ { - n + k + 1} \right]\;\)

\(\frac{1}{{2\pi }}\mathop \smallint \nolimits_0^{2\pi } X\left( {{e^{j\omega }}} \right)\;Y\left( {{e^{ - j\omega }}} \right) = z\left[ 0 \right]\)

Putting n = 0, we get:= 2

\(z\left[ 0 \right] = \mathop \sum \nolimits_{k = - \infty }^2 2 \cdot u\left[ {k + 1} \right]\)

\( = \mathop \sum \nolimits_{k = - 1}^2 2 \cdot \left( 1 \right)\)

= 2 × 4

= 8

The frequency response and the main lobe width for rectangular window are

  1. \(\frac{{\sin \frac{{\omega N}}{2}}}{{\sin \frac{\omega }{2}}}\;and\frac{{4\pi }}{N}\)
  2. \(\frac{{\sin \frac{{\omega N}}{2}}}{{\frac{\omega }{2}}}\;and\frac{\pi }{N}\)
  3. \(\frac{{\sin \frac{\omega }{2}}}{{\sin \frac{{\omega N}}{2}}}\;and\frac{{2\pi }}{N}\)
  4. \(\frac{{\sin \frac{{\omega N}}{4}}}{{\sin \frac{\omega }{2}}}\;and\frac{{8\pi }}{N}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{\sin \frac{{\omega N}}{2}}}{{\sin \frac{\omega }{2}}}\;and\frac{{4\pi }}{N}\)

Discrete Time Fourier Transform (DTFT) Question 9 Detailed Solution

Download Solution PDF

The rectangular window is the most common windowing technique to design a finite impulse response (FIR) filter.

A rectangular window is defined as

\({w_R}\left( n \right) = \left\{ {\begin{array}{*{20}{c}} {1\;:0 \le n \le N - 1}\\ {0\;\;\;\;:otherwise} \end{array}} \right.\)

Where N = length of the FIR filter

The frequency response of wR(n) is wR(ω) which is calculated as:

wR(ω) = DTFT of wR(n), i.e.

\({w_R}\left( \omega \right) = \mathop \sum \limits_{n = - \infty }^\infty {w_R}\left( n \right){e^{ - j\omega n}}\)

ω ϵ [-π, π] rad/sec

For the given rectangular sequence, the Fourier transform will be a sinc sequence given by:

\({w_R}\left( \omega \right) \approx \frac{{\sin \left( {\frac{{\omega N}}{2}} \right)}}{{\sin \left( {\frac{\omega }{2}} \right)}}\)

The spectrum is as shown:

F2 S.B Madhu 07.07.20 D1

Main-lobe width = 2 × (zero-crossing points of sin c function), i.e.

\( = 2 \times \frac{{2\pi }}{N} = \frac{{4\pi }}{N}\)

26 June 1

Types of Window

Approximate main lobe width

1. Rectangular

\(\frac{{4\pi }}{N}\)

2. Bartlett

\(\frac{{8\pi }}{N}\)

3. Hanning

\(\frac{{8\pi }}{N}\)

4. Hamming

\(\frac{{8\pi }}{N}\)

5. Blackman

\(\frac{{12\pi }}{N}\)

H(e) is the frequency response of a discrete time LTI system and H1(e) is the frequency response of its inverse function. Then

  1. H(e)H1(e) = 1
  2. H(e)H1(e) = δ(ω)  
  3. H(e) * H1(e) = 1
  4. H(e) * H1 (e) = δ(ω)

Answer (Detailed Solution Below)

Option 1 : H(e)H1(e) = 1

Discrete Time Fourier Transform (DTFT) Question 10 Detailed Solution

Download Solution PDF

Concept:

D.T.F.T

Discrete-time Fourier transform is defined by

\(H\left( {{{\rm{e}}^{{\rm{jω }}}}} \right) = \mathop \sum \limits_{n = - \infty }^\infty h\left[ n \right]{e^{ - jω n}}\)

Inverse function of x(n) is defined as:

h1(n) = 1/h(n)

H1(e) = 1/H(e)

H(e) H1(e) = 1

discrete time signal x[n] = {1, 2, 3, 0, −3, −2, −1} is having a discrete-time Fourier transform X(e). The value of \(\int_{−\pi}^{\pi}\)|X(e)|2 dΩ is:

  1. 28
  2. 28 π
  3. 56 π
  4. 14

Answer (Detailed Solution Below)

Option 3 : 56 π

Discrete Time Fourier Transform (DTFT) Question 11 Detailed Solution

Download Solution PDF

Explanation:

Summation property of discrete-time Fourier transform:

The summation of the discrete time signal x[n] is given by:

\(\int_{−π}^{π} |X(e^{j\Omega})|^2d\Omega\) = [π - (-π )] × {12 + 22 + 32 + (-1)2 + (-2)+ (-3)2}

\(\int_{−π}^{π} |X(e^{j\Omega})|^2d\Omega\) = 2π × 28

\(\int_{−π}^{π} |X(e^{j\Omega})|^2d\Omega=56\pi\)

The signal \(sin (\sqrt{2 \pi t})\)  is

  1. periodic with period  \(T = \sqrt{2 \pi}\)
  2. not periodic
  3. periodic with period T = 2π
  4. periodic with period T = 4π2

Answer (Detailed Solution Below)

Option 2 : not periodic

Discrete Time Fourier Transform (DTFT) Question 12 Detailed Solution

Download Solution PDF

Concept: 

Periodic Signal:

A signal x(t) is said to be periodic if for some positive constant T0;

x(t) = x (t + T0) for all t

The smallest value of T0 that satisfies the periodicity condition of the above equation is called the fundamental period of x(t).

Periodic signal repeat with some fixed time period T  and continue with -∞  to +∞

The sum of two periodic functions is often periodic, but not always.

Suppose that x(t) is periodic with fundamental period P, and g(t) is periodic with fundamental period Q. Then x(t) + g(t) will be periodic with a period R, if P and Q both have a common multiple R.

Example: sin x + sin πx

sin x is periodic with a period 2π 

sin πx is periodic with a period 2

But since 2π and 2 have no common multiple, the sum of the two signals will not be periodic.

Given:

x(t) = \(sin (\sqrt{2 \pi t})\)

  • For negative values of ‘t, sine-function will apply to imaginary values.
  • For positive values of ‘t’, sine-function will apply on real-values.
  • So, there will not be repetition in the waveform.

So We can draw waveform only in the RHS but we cannot draw waveform in the LHS.
So, sin( 2πt ) is non-periodic.

Important Points

  • Any analog sinusoid or harmonic signal is always periodic. As the sinusoids are periodic and harmonic are expressed in terms of sinusoids only.
  • Additional phase or Amplitude will not affect the periodicity of a signal.
  • The Sum of two periodic discrete-time signals is always periodic.
  • All periodic signals are power signals but vice versa may not be true.
  • The sequence obtained by uniform sampling of a continuous-time signal may not be periodic.

The DTFT of x[n] = 0.5n u[n] using geometric series is:

  1. \(X\left( \omega \right) = \frac{1}{{1 - 0.5{e^{ - j\omega }}}}\)
  2. X(ω)=1 – 0.5e
  3. X(ω)=1 – 0.5e-jω 
  4. \(X\left( \omega \right) = \frac{1}{{1 - 0.5{e^{j\omega }}}}\)

Answer (Detailed Solution Below)

Option 1 : \(X\left( \omega \right) = \frac{1}{{1 - 0.5{e^{ - j\omega }}}}\)

Discrete Time Fourier Transform (DTFT) Question 13 Detailed Solution

Download Solution PDF

The Discrete-Time Fourier transform of a signal of infinite duration x[n] is given by:

\(X\left( \omega \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j\omega n}}\)

For a signal x(n) = an u(n), the DTFT will be:

\(X\left( \omega \right) = \mathop \sum \limits_{n = - \infty }^\infty a^nu\left[ n \right]{e^{ - j\omega n}}\)

Since u[n] is zero for n < 0 and a constant 1 for n > 0, the above summation becomes:

\(X\left( \omega \right) = \mathop \sum \limits_{n = 0 }^\infty a^n{e^{ - j\omega n}}\)

\(X\left( \omega \right) = \mathop \sum \limits_{n = 0 }^\infty (a{e^{ - j\omega n})}\)   ---(1)

The geometric series states that:

\(\mathop \sum \limits_{n = 0 }^\infty r^n=\frac{1}{1-r}\), for 0 < r < 1

Equation (1) can now be written as:

\(X\left( \omega \right) =\frac{1}{1-ae^{-j\omega}}\)    ---(2)

Application:

Given x[n] = 0.5u[n], i.e. a = 0.5

The DTFT of the above given sequence using Equation (2) will be:

\(X\left( \omega \right) =\frac{1}{1-0.5e^{-j\omega}}\)

A Fourier transform pair is given by:

\({\left( {\frac{2}{3}} \right)^n}u\left[ {n + 3} \right]\mathop \Leftrightarrow \limits^{FT} \frac{{A{e^{ j6\pi f}}}}{{1 - \left( {\frac{2}{3}} \right){e^{ - j2\pi f}}}}\)

where u[n] denotes the unit step sequence. The values of A is _______.

Answer (Detailed Solution Below) 3.36 - 3.39

Discrete Time Fourier Transform (DTFT) Question 14 Detailed Solution

Download Solution PDF

Concept:

The Fourier transform of anu(n) is given as:

\({a^n}u\left( n \right)\mathop \leftrightarrow \limits^{F.T.} \frac{1}{{1 - a{e^{ - j\omega }}}}\)

Also, the time-shifting property of Fourier transforms states that:

If x(n) ↔ X(jω)

\(x\left( {n - {n_0}} \right) \leftrightarrow {e^{ - j{n_0}\omega }} \cdot X\left( {j\omega } \right)\)

Application:

Let \(f\left( n \right) = {\left( {\frac{2}{3}} \right)^n}u\left( n \right)\)

The Fourier Transform of f(n) will be:

\(F\left( {j\omega } \right) = \frac{1}{{1 - \left( {\frac{2}{3}} \right){e^{ - j\omega }}}}\)

Replacing ‘ω’ with 2nf, we get:

\(F\left( f \right) = \frac{1}{{1 - \left( {\frac{2}{3}} \right){e^{ - j2\pi f}}}}\)

Applying Time shifting property, we can write:

\({\left( {\frac{2}{3}} \right)^{n + 3}}u\left( {n + 3} \right) \leftrightarrow \frac{{{e^{j \cdot 3\omega }}}}{{1 - \left( {\frac{2}{3}} \right){e^{ - j2\pi f}}}}\)

The above expression can be written as:

\({\left( {\frac{2}{3}} \right)^3} \cdot {\left( {\frac{2}{3}} \right)^n}u\left( {n + 3} \right) \leftrightarrow \frac{{{e^{j \cdot 6\pi f}}}}{{1 - \left( {\frac{2}{3}} \right){e^{ - j2\pi f}}}}\)

Multiplying both sides with \({\left( {\frac{3}{2}} \right)^3}\), we get:

\({\left( {\frac{2}{3}} \right)^n}u\left( {n + 3} \right) \leftrightarrow \frac{{{{\left( {\frac{3}{2}} \right)}^3} \cdot {e^{j6\pi f}}}}{{1 - \left( {\frac{2}{3}} \right){e^{ - j2\pi f}}}}\)

Comparing this with the given transform, we get:

\(A = {\left( {\frac{3}{2}} \right)^3} = {\left( {1.5} \right)^3}\)

A = 3.375

The estimated order of the given digital multiband filter using a Hann window \(0.99 \le \left| {H\left( {{e^{jw}}} \right)} \right| \le 1.01,0 \le \omega \le 0.3\pi \) 

\(\left| {H\left( {{e^{jw}}} \right)} \right| \le 0.01,0.35\pi \le \omega \le 0.55\pi ;0.49 \le \left| {H\left( {{e^{jw}}} \right)} \right| \le 0.51,0.6\pi \le \omega \le \pi~\)is:

  1. 120
  2. 124
  3. 128
  4. 45

Answer (Detailed Solution Below)

Option 2 : 124

Discrete Time Fourier Transform (DTFT) Question 15 Detailed Solution

Download Solution PDF

FIR Design Methods include:

  • Impulse response truncation – the simplest design method, has undesirable frequency domain-characteristics.
  •  Windowing design method – simple and convenient but not optimal, i.e. order achieved is not minimum possible.
  • There are much less ripples for the Hanning window but than the transition width has increased.
Get Free Access Now
Hot Links: teen patti rules teen patti apk download teen patti diya teen patti 51 bonus online teen patti real money