साधारण और चक्रवृद्धि दोनों MCQ Quiz in हिन्दी - Objective Question with Answer for Simple and Compound Both - मुफ्त [PDF] डाउनलोड करें
Last updated on Jul 9, 2025
Latest Simple and Compound Both MCQ Objective Questions
साधारण और चक्रवृद्धि दोनों Question 1:
Answer (Detailed Solution Below)
Simple and Compound Both Question 1 Detailed Solution
Shortcut Trick
दिया गया है:
मूलधन (P) = ₹47,100
दर (R) = 9%
समय = 2 वर्ष
सूत्र का उपयोग करने पर:
2 वर्षों के लिए अंतर = P
गणना:
⇒
⇒
⇒ अंतर = 47100 × 0.0081 = 381.51
∴ 2 वर्षों के लिए चक्रवृद्धि ब्याज और साधारण ब्याज के बीच अंतर = ₹381.51
Alternate Method
प्रयुक्त सूत्र:
साधारण ब्याज (साधारण ब्याज) =
चक्रवृद्धि ब्याज (CI) = P
गणना:
SI =
CI = 47100
1.092 = 1.1881 ⇒ CI = 47100
अंतर = CI – SI = 8859.51 – 8478 = 381.51
∴ चक्रवृद्धि और साधारण ब्याज के बीच का अंतर = ₹381.51
साधारण और चक्रवृद्धि दोनों Question 2:
किसी निश्चित धनराशि पर 16% वार्षिक दर से 2 वर्षों के लिए चक्रवृद्धि ब्याज (वार्षिक रूप से संयोजित) और साधारण ब्याज के बीच का अंतर ₹797 है। धनराशि ज्ञात कीजिए (निकटतम पूर्णांक तक पूर्णांकित)।
Answer (Detailed Solution Below)
Simple and Compound Both Question 2 Detailed Solution
दिया गया है:
दर (r) = 16% प्रति वर्ष
समय (t) = 2 वर्ष
CI और SI के बीच अंतर = ₹797
प्रयुक्त सूत्र:
2 वर्षों के लिए अंतर (CI − SI) =
गणना:
⇒
⇒
⇒
इसलिए सही उत्तर
साधारण और चक्रवृद्धि दोनों Question 3:
रु. [P +2000] पर [R + 5] % की दर से 3वें वर्ष और 2वें वर्ष के साधारण ब्याज का अंतर रु. [x - 3000] है। यदि रु. [2x + 4000] पर R% की ब्याज दर से 3 वर्षों में साधारण ब्याज रु. 6000 है, तो R का मान ज्ञात कीजिए।
Answer (Detailed Solution Below)
Simple and Compound Both Question 3 Detailed Solution
गणना
दिया गया है:
तीसरे और दूसरे वर्ष के साधारण ब्याज का अंतर = x - 3000
इसलिए, x - 3000 = 0 [क्योंकि साधारण ब्याज हर वर्ष समान होता है]
इसलिए, x = 3000
SI = (2x + 4000) × R × 3 / 100 = 6000
→ (6000 + 4000) × R = 200000
→ R = 200000 / 10000
R = 20%
साधारण और चक्रवृद्धि दोनों Question 4:
तीन वर्षों और दो वर्षों के लिए r% पर चक्रवृद्धि ब्याज (CI) और साधारण ब्याज (SI) के अंतर का अनुपात 25:8 है। 2 वर्षों के लिए [r + 7.5]% पर 3200 रुपये का चक्रवृद्धि ब्याज ज्ञात कीजिए।
Answer (Detailed Solution Below)
Simple and Compound Both Question 4 Detailed Solution
गणना
मूलधन P पर r% की दर से 2 वर्षों के लिए CI और SI के बीच अंतर:
CI - SI (2 वर्ष) = [P × r2 / 1002]
3 वर्षों के लिए:
CI - SI (3 वर्ष) = [P × r2 / 1002] × [(300 + r) / 100]
अनुपात लीजिए:
[ 3 वर्षों के लिए CI - SI] / [2 वर्षों के लिए CI - SI] = 25/8
[(300 + r) / 100] = 25/8
इसलिए, 2400 + 8r = 2500
इसलिए, ⇒ r = 100 / 8 = 12.5%
अब ब्याज दर 12.5 + 7.5 = 20% है
20% प्रति वर्ष की दर से 2 वर्षों के लिए क्रमिक चक्रवृद्धि ब्याज 44% है।
इसलिए, अभीष्ट ब्याज राशि 3200 × 44 /100 = 1408 है।
साधारण और चक्रवृद्धि दोनों Question 5:
चक्रवृद्धि ब्याज और साधारण ब्याज के बीच का अंतर ज्ञात करें जब रु. 15625 की धनराशि को 3 साल के लिए 4% वार्षिक दर से निवेश किया जाता है।
Answer (Detailed Solution Below)
Simple and Compound Both Question 5 Detailed Solution
दिया है:
15,625 रुपये की धनराशि को 3 साल के लिए 4% वार्षिक की दर से निवेश किया जाता है।
प्रयुक्त सूत्र:
S.I. =
A = P × (1 +
A = P + C.I.
जहाँ, S.I. = साधारण ब्याज, P = मूलधन, T = वर्षों में समय
R = ब्याज की दर, A = राशि
गणना:
यहां, P = रु.15625, T = 3 वर्ष, R = 4%
S.I. =
यहां,
A = P × (1 +
⇒ A = 15625 × (1 +
⇒ A = रु.17576
अब, C.I. = A - P
⇒ C.I. = 17576 - 15625 = रु.1951
अब, चक्रवृद्धि ब्याज और साधारण ब्याज के बीच का अंतर = रु. (1951 - 1875) = रु. 76
अत:, अभीष्ट अंतर रु. 76 है।
Top Simple and Compound Both MCQ Objective Questions
एक निश्चित धनराशि पर, 2 वर्षों के लिए चक्रवृद्धि ब्याज 304.5 रु. है और समान समय अवधि के लिए साधारण ब्याज 290 रु. है। प्रति वर्ष ब्याज की दर ज्ञात कीजिए।
Answer (Detailed Solution Below)
Simple and Compound Both Question 6 Detailed Solution
Download Solution PDFदिया है:
2 वर्षों के लिए चक्रवृद्धि ब्याज = 304.5 रु.
2 वर्षों के लिए साधारण ब्याज = 290 रु.
गणना:
1 वर्ष के लिए साधारण ब्याज = (290/2) रु.
= 145 रु.
साधारण ब्याज और चक्रवृद्धि ब्याज के बीच अंतर = (304.5 – 290) रु.
⇒ 14.5 रु.
प्रति वर्ष ब्याज की दर = (14.5/145) × 100%
⇒ 10%
∴ प्रति वर्ष ब्याज की दर 10% है।यदि वार्षिक रूप से संयोजित 12% प्रति वर्ष की दर से 2 वर्षों का चक्रवृद्धि ब्याज 1,908 रुपये है, तो मूलधन ज्ञात कीजिए।
Answer (Detailed Solution Below)
Simple and Compound Both Question 7 Detailed Solution
Download Solution PDFदिया गया
2 वर्ष बाद चक्रवृद्धि ब्याज = रु. 1,908
ब्याज दर = 12% प्रति वर्ष
अवधारणा:
CI = P [(1 + r/100)t - 1]
समाधान:
CI = P [(1 + r/100)t - 1]
⇒ 1908 = P [(1 + 12/100)2 - 1]
⇒ 1908 = P [(1 + 3/25)2 - 1]
⇒ 1908 = P [(28/25)2 - 1]
⇒ 1908 = P [784/625 - 1]
⇒ 1908 = P × 159 / 625
⇒ P = 1908 × 625 / 159
⇒ P = 12 × 625 = रु. 7500
अतः मूलधन 7,500 रुपये है।
एक निश्चित मूलधन राशि पर 10% वार्षिक ब्याज दर से 4 वर्ष हेतु साधारण ब्याज 1000 रुपये के मूलधन पर 20% वार्षिक ब्याज दर से 2 वर्ष के चक्रवृद्धि ब्याज का आधा है। मूलधन ज्ञात कीजिए।
Answer (Detailed Solution Below)
Simple and Compound Both Question 8 Detailed Solution
Download Solution PDFगणना:
2 वर्षों के लिए 20% की प्रभावी दर = 20 + 20 + (20 × 20)/100 = 44%
तो, 1000 रुपये पर 2 वर्षों के लिए चक्रवृद्धि ब्याज = 1000 × 44/100 = 440
माना कि साधारण ब्याज में निवेश किया गया मूलधन P है।
अब, प्रश्न के अनुसार,
(P × 4 × 10)/100 = 440/2
⇒ P = 1100/2 = 550
∴ मूलधन राशि 550 रुपये होगी।
एक वर्ष के लिए 25% प्रति वर्ष की दर से साधारण ब्याज और चक्रवृद्धि ब्याज (ब्याज अर्द्ध वार्षिक रूप से संयोजित होता है) के बीच का अंतर 4375 रुपये है। मूलधन क्या होगा?
Answer (Detailed Solution Below)
Simple and Compound Both Question 9 Detailed Solution
Download Solution PDFदिया गया है:
एक वर्ष के लिए 25% प्रति वर्ष की दर से साधारण ब्याज और चक्रवृद्धि ब्याज (ब्याज अर्द्ध वार्षिक रूप से संयोजित होता है) के बीच का अंतर 4375 रुपये है
प्रयुक्त सूत्र:
साधारण ब्याज = (P × N × R)/100
चक्रवृद्धि ब्याज = [P(1 + (r/200))T] - P (अर्द्ध वार्षिक संयोजित के लिए)
गणना:
माना मूलधन P है,
साधारण ब्याज = (P × 1 × 25)/100 = P/4
चक्रवृद्धि ब्याज = [P(1 + (25/200))2] - P ( T = 2 ∵ 1 वर्ष के लिए अर्द्ध वार्षिक आधार पर)
⇒ चक्रवृद्धि ब्याज = 17P/64
अब, चक्रवृद्धि ब्याज - साधारण ब्याज = (17P/64) - (P/4) = P/64
⇒ P/64 = 4375
∴ P = 64 × 4375 = 280000
लघु विधि प्रयुक्त सूत्र:
CI - SI = P(R/100)2
दर (R) = 25%/2 अर्धवार्षिक चक्रवृद्धि के कारण।
⇒ 4375 = P (25/200)2
⇒ P = 4375 × 64
⇒ P = 280,000
∴ राशि 280,000 रुपये है।
P रुपये की एक निश्चित राशि पर r% प्रति वर्ष की दर से 3 वर्षों के लिए साधारण ब्याज 11,250 रुपये है और समान राशि पर 2 वर्षों के लिए समान दर प्रतिशत प्रति वर्ष चक्रवृद्धि ब्याज 7,650 रुपये है। तो क्रमशः P और r का मान क्या है?
Answer (Detailed Solution Below)
Simple and Compound Both Question 10 Detailed Solution
Download Solution PDFदी गई जानकारी:
3 वर्षों के लिए साधारण ब्याज = 11,250 रुपये
2 वर्षों के लिए समान दर पर चक्रवृद्धि ब्याज = 7650 रुपये
प्रयुक्त सूत्र:
P =
P = मूलधन
SI = साधारण ब्याज
R = दर
T = समय
गणना:
1 वर्ष के लिए साधारण ब्याज = 11,250 ÷ 3 = 3,750 रुपये
2 वर्षों के लिए साधारण ब्याज = 2 × 3750 = 7500 रुपये
2 वर्षों के लिए चक्रवृद्धि ब्याज और साधारण ब्याज के बीच का अंतर = 7650 - 7500 = 150 रुपये
चक्रवृद्धि ब्याज और साधारण ब्याज के बीच का यह अंतर साधारण ब्याज पर पहले वर्ष अर्थात् 3750 रुपये के लिए था।
∴ दर % =
मूलधन =
∴ मूलधन 93,750 रुपये था और ब्याज दर 4% थी।
2 वर्षों में 40,000 रुपये के मूलधन पर अर्जित चक्रवृद्धि ब्याज और साधारण ब्याज के बीच का अंतर 324 रुपये था। प्रति वर्ष ब्याज की दर कितनी थी?
Answer (Detailed Solution Below)
Simple and Compound Both Question 11 Detailed Solution
Download Solution PDFदिया गया है:-
चक्रवृद्धि ब्याज(CI) - साधारण ब्याज(SI) = 324
मूलधन = 40000, समय = 2 वर्ष
प्रयुक्त सूत्र:-
चक्रवृद्धि ब्याज = मिश्रधन - मूलधन
CI = P[(1 + R/100)n - 1]
साधारण ब्याज = (P × R × T)/100
गणना:-
प्रश्नानुसार-
⇒ P[(1 + R/100)n - 1] - (P × R × T)/100 = 324
⇒ 40000 [(1 + R/100)2 - 1] - (40000 × R × 2)/100 = 324
⇒ 40000 [{(100 + R)2/1002 - 1} - {R × 2}/100 = 324
⇒ 400 [{1002 + R2 + 2 × 100 × R -1002}/100 - 2R] = 324
⇒ [{R2 + 200R}/100 - 2R] = 324/400
⇒ (R2 + 200R - 200R)/100 = 324/400
⇒ R2 = 32400/400
⇒ R2 = 81 = 9%
∴ प्रति वर्ष ब्याज की दर 9% है।
Shortcut Trick प्रयुक्त सूत्र:-
2 वर्ष के लिए CI - SI के बीच का अंतर,
⇒ D = P(R/100)2
जहाँ,
D = अंतर, P = मूलधन, R = ब्याज दर
गणना:-
⇒ 324 = 40000(R/100)2
⇒ R2 × 40000 = 3240000
⇒ R2 = 81
⇒ R = 9%
∴ अभीष्ट ब्याज दर 9% है।
किसी राशि पर, 2 वर्षों के लिए चक्रवृद्धि ब्याज 832 रुपये है, जबकि इतने ही समय के लिए साधारण ब्याज 800 रुपये है, तो 3 वर्ष के समय के लिए राशि में अंतर ज्ञात कीजिए?
Answer (Detailed Solution Below)
Simple and Compound Both Question 12 Detailed Solution
Download Solution PDF
|
1 |
2 |
|
साधारण ब्याज (SI) |
400 |
400 |
400 |
चक्रवृद्धि ब्याज (CI) |
400 |
432 |
432+432×8/100 |
यदि 2 वर्ष के लिए 10% ब्याज दर पर साधारण ब्याज 500 रुपये है तो समान समय के लिए चक्रवृद्धि ब्याज ज्ञात कीजिए।
Answer (Detailed Solution Below)
Simple and Compound Both Question 13 Detailed Solution
Download Solution PDFदिया हुआ:
समय = 2 वर्ष, साधारण ब्याज = 500, दर = 10%
उपयोग किया गया सूत्र:
साधारण ब्याज = (मूल × दर × समय)/100
चक्रवृद्धि ब्याज = मूलधन [(1 + दर/100)t - 1]
गणना:
माना कि मूलधन 'P' है।
साधारण ब्याज = (मूल × दर × समय)/100
⇒ 500 = (मूल × 10 × 2)/100
⇒ मूलधन = 2500
चक्रवृद्धि ब्याज = मूलधन [(1 + दर/100)t - 1]
⇒ 2500 [(1 + 10/100) 2 - 1]
⇒ 525
∴ चक्रवृद्धि ब्याज 525 रुपये है।
2 वर्षों में वार्षिक रूप से संयोजित चक्रवृद्धि ब्याज और समान ब्याज दर पर एक निश्चित राशि पर साधारण ब्याज का अंतर राशि का 144% है। वार्षिक ब्याज दर ज्ञात कीजिए।
Answer (Detailed Solution Below)
Simple and Compound Both Question 14 Detailed Solution
Download Solution PDFदी गई जानकारी:
2 वर्षों के लिए चक्रवृद्धि ब्याज (CI) और साधारण ब्याज (SI) के बीच का अंतर = मूलधन (P) का 144%
अवधारणा या सूत्र:
CI और SI के बीच 2 वर्षों का अंतर P × (r ÷ 100)2 द्वारा दिया ज्ञात किया जाता है।
गणना:
सूत्र में दिए गए मानों को प्रतिस्थापित कीजिए
⇒ 144% P = P × (r ÷ 100)2
⇒ (144/100)P = P × (R/100)2
दोनों तरफ वर्गमूल लेने पर,
⇒ 12/10 = R/100
⇒ R = 120
इसलिए, प्रति वर्ष ब्याज दर 120% है।
4500 रुपये की धनराशि पर 3 वर्षों में 8% प्रति वर्ष की दर से चक्रवृद्धि ब्याज और साधारण ब्याज के बीच अंतर क्या है?
Answer (Detailed Solution Below)
Simple and Compound Both Question 15 Detailed Solution
Download Solution PDFसाधारण ब्याज (SI) = (P × R × T)/100, जहाँ P मूलधन है, R ब्याज की दर है और T समय-अवधि है।
चक्रवृद्धि ब्याज (CI) = [P (1 + R/100)n] - P, जहाँ P मूलधन है, R ब्याज की दर है और n समय-अवधि है।
⇒ SI = (4500 × 8 × 3)/100 = 1080 रुपये
⇒ CI = [4500 (1 + 8/100)3] - 4500 = 5668.7 - 4500 रुपये = 1168.7
∴ अभीष्ट अंतर = 88.70 रुपये