Froude Model Law MCQ Quiz in বাংলা - Objective Question with Answer for Froude Model Law - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Mar 19, 2025
Latest Froude Model Law MCQ Objective Questions
Top Froude Model Law MCQ Objective Questions
Froude Model Law Question 1:
In a flow condition where both viscous and gravity forces dominate and both the Froude number and Reynolds’s number are same in model and prototype, and the ratio of kinematic viscosity of model to that of the prototype is 0.0894, what is the model scale?
Answer (Detailed Solution Below)
Froude Model Law Question 1 Detailed Solution
Given that Froude and Reynolds’s number is same for both model and prototype
\(\therefore {\left( {\frac{V}{{\sqrt {gL} }}} \right)_m} = {\left( {\frac{V}{{\sqrt {gL} }}} \right)_P}\) … (i)
\( \Rightarrow \frac{{{V_m}}}{{{V_P}}} = \sqrt {\frac{{{L_m}}}{{{L_P}}}} = {\left( {\frac{{{L_m}}}{{{L_P}}}} \right)^{\frac{1}{2}}}\)
\({\left( {\frac{{\rho VL}}{\mu }} \right)_m} = {\left( {\frac{{\rho VL}}{\mu }} \right)_p}\) … (ii)
\( \Rightarrow \frac{{{V_m}}}{{{V_P}}}.\frac{{{L_m}}}{{{L_P}}} = \frac{{{\mu _m}}}{{{\mu _P}}} \Rightarrow {\left( {\frac{{{L_m}}}{{{L_P}}}} \right)^{\frac{1}{2}}}.\frac{{{L_m}}}{{{L_P}}} = \frac{{{\mu _m}}}{{{\mu _P}}} \Rightarrow \frac{{{\mu _m}}}{{{\mu _P}}} = {\left( {\frac{{{L_m}}}{{{L_P}}}} \right)^{\frac{3}{2}}}\)
\(\frac{{{{\rm{\mu }}_{\rm{m}}}}}{{{{\rm{\mu }}_{\rm{p}}}}} = 0.0894\)
From (i) and (ii)
\(\frac{{{L_m}}}{{{L_p}}} = {\left( {\frac{{{\mu _m}}}{{{\mu _p}}}} \right)^{2/3\;}}\)
\( \Rightarrow \frac{{{{\rm{L}}_{\rm{m}}}}}{{{{\rm{L}}_{\rm{p}}}}} = {\left( 0.0894 \right)^{2/3}}=0.2=1:5\)
Model Scale:
Lm : Lp = 1 : 5
Note:
Froude number is defined as the square root of the ratio of inertia force of a flowing fluid to the gravity force.
\({F_e} = \sqrt {\frac{{{F_i}}}{{{F_g}}}} = \sqrt {\frac{{\rho A{V^2}}}{{\rho ALg}}} = \sqrt {\frac{{{V^2}}}{{Lg}}} = \frac{V}{{\sqrt {Lg} }}\)
Reynold Number is defined as the ratio of inertia force of a flowing fluid to the viscous force of the fluid.
\({{\mathop{\rm R}\nolimits} _e} = \frac{{{F_i}}}{{{F_v}}} = \frac{{\rho VL}}{\mu }\)
Froude Model Law Question 2:
A 1/25 model of a ship is to be tested for estimating the wave drag. If the speed of the ship is 1 m/s, then the speed (in m/s) at which the model must be tested is (assume Froude's model)
Answer (Detailed Solution Below) 0.2
Froude Model Law Question 2 Detailed Solution
Concept:
Froude’s Model Law:
\(\frac{{{{\rm{V}}_{\rm{m}}}}}{{\sqrt {{{\rm{L}}_{\rm{m}}}} }} = \frac{{{{\rm{V}}_{\rm{p}}}}}{{\sqrt {{{\rm{L}}_{\rm{p}}}} }}\)
Calculation:
Given:
Vp = 1 m/s, Lm: Lp = 1:25
Now, we know that
\(\frac{{{{\rm{V}}_{\rm{m}}}}}{{\sqrt {{{\rm{L}}_{\rm{m}}}} }} = \frac{{{{\rm{V}}_{\rm{p}}}}}{{\sqrt {{{\rm{L}}_{\rm{p}}}} }}\)
\( \Rightarrow {{\rm{V}}_{\rm{m}}} = {{\rm{V}}_{\rm{p}}}\sqrt {\frac{{{{\rm{L}}_{\rm{m}}}}}{{{{\rm{L}}_{\rm{p}}}}}} = 1 \times \sqrt {\frac{1}{{25}}} = 0.2{\rm{\;m}}/{\rm{s}}\)
Important Points
Froude number:
Froude number is defined as the square root of the ratio of the inertia force of a flowing fluid to the gravity force.
\({F_e} = \sqrt {\frac{{{F_i}}}{{{F_g}}}} = \sqrt {\frac{{\rho A{V^2}}}{{\rho ALg}}} = \sqrt {\frac{{{V^2}}}{{Lg}}} = \frac{V}{{\sqrt {Lg} }}\)
Froude Model Law Question 3:
A Ship’s model of scale 1:100 had a wave resistance of 1 kg at its design Speed. The corresponding wave resistance in prototype will be
Answer (Detailed Solution Below)
Froude Model Law Question 3 Detailed Solution
\({l_r} = \frac{{{l_m}}}{{{l_p}}} = \frac{1}{{100}}\)
Froude model is applicable here because of influence of gravity force using Froude model law
\(\begin{array}{l} {V_r} = \sqrt {{l_r}} \\ \frac{{{F_m}}}{{{F_p}}} = \frac{{1kg}}{{{F_p}}} = \frac{{\rho l_m^2V_m^2}}{{\rho l_p^2V_p^2}} = l_r^3 = {\left( {\frac{1}{{100}}} \right)^3} \end{array}\)
or, FP = 1000000 kg
Froude Model Law Question 4:
ln model similarity, if gravitational and inertial forces are the only important forces then what is the scale ratio for discharge between a model and its prototype?
where Lr = Scale ratio for length
Answer (Detailed Solution Below)
Froude Model Law Question 4 Detailed Solution
If gravitational and inertial force are me only important forces, then the Frouds number must be the same in the model and prototype. Thus
\(\frac{{{V_m}}}{{\sqrt {g{L_m}} }} = \frac{{{V_p}}}{{\sqrt {g{L_p}} }}\)
Scale Ratio for length: \(L_r=\frac{L_p}{L_m}\)
From Froude Model Law:
\(\frac{{{V_m}}}{{\sqrt {g{L_m}} }} = \frac{{{V_p}}}{{\sqrt {g{L_p}} }} \Rightarrow \frac{{{V_m}}}{{\sqrt {{L_m}} }} = \frac{{{V_p}}}{{\sqrt {{L_p}} }}=\frac{V_p}{V_m}=\sqrt {\frac{L_p}{L_m}}=\sqrt {L_r}\)
Scale Ratio for Time: Time = Length/Velocity
\({T_r} = \frac{{{T_p}}}{{{T_m}}} = \frac{{{{\left( {\frac{L}{V}} \right)}_P}}}{{{{\left( {\frac{L}{V}} \right)}_m}}} = \frac{{{L_p}}}{{{L_m}}}.\frac{{{V_m}}}{{{V_p}}} = {L_r}.\frac{1}{{\sqrt {{L_r}} }} = \sqrt {{L_r}} \)
Scale ratio for Discharge:
Q = A × V = L2 × L/T = L3/T
\({Q_r} = \frac{{{Q_p}}}{{{Q_m}}} = \frac{{{{\left( {\frac{{{L^3}}}{T}} \right)}_P}}}{{{{\left( {\frac{{{L^3}}}{T}} \right)}_m}}} = {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^3}.\frac{{{T_m}}}{{{T_p}}} = {L_r}^3.\frac{1}{{\sqrt {{L_r}} }} = {L_r}^{2.5}\)
Or
\({Q_r} = \frac{{{Q_p}}}{{{Q_m}}} = \frac{{{{\left( {A \times V} \right)}_P}}}{{{{\left( {A \times V} \right)}_m}}} = \frac{{{A_P}}}{{{A_m}}}.\frac{{{V_P}}}{{{V_m}}} = {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^2}.\sqrt {\frac{{{L_P}}}{{{L_m}}}} = {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^{2.5}} = {L_r}^{2.5}\)
Froude Model Law Question 5:
In the Froude law of similitude the accelerations ratio ar =
Answer (Detailed Solution Below)
Froude Model Law Question 5 Detailed Solution
Froude law is valid
\(\begin{array}{l} {f_r} = \frac{{{V_r}}}{{\sqrt {g{L_r}} }}\\ {V_r} = \sqrt {{L_r}} \\ {a_r} = \frac{{{V_r}}}{{{t_r}}} = \frac{{{V_r}}}{{\frac{{{L_r}}}{{{V_r}}}}}\\ = \frac{{V_r^2}}{{{L_r}}} = \frac{{{L_r}}}{{{L_r}}} = 1 \end{array}\)
Froude Model Law Question 6:
A ship model 1/60 scale with negligible friction is tested in a towing tank at a speed of 0.6 m/s. If a force of 0.5 kg is required to tow the model, the propulsive force required to tow prototype ship will be
Answer (Detailed Solution Below)
Froude Model Law Question 6 Detailed Solution
For dynamic singularity, as per Froude law,
\(\begin{array}{l} {\left( {\frac{V}{{\sqrt {gL} }}} \right)_m} = {\left[ {\frac{V}{{\sqrt {gL} }}} \right]_p}\\ \therefore \frac{{{V_p}}}{{{V_m}}} = \sqrt {\frac{{{L_p}}}{{{L_m}}}} = \sqrt {60} \end{array}\)
Propulsive force of prototype
\(\begin{array}{l} {F_p} = {F_m}{\left( {\frac{{{V_p}}}{{{V_m}}}} \right)^2} \times {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^2}\\ = {F_m}{\left( {\sqrt {\frac{{{L_p}}}{{{L_m}}}} } \right)^2} \times {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^2} \end{array}\)
= 0.5 × 10 × (60) × 602
= 1080000 N ≅ 1 MNFroude Model Law Question 7:
For similitude with gravity force, velocity ratio is
Answer (Detailed Solution Below)
Froude Model Law Question 7 Detailed Solution
As Froude No is equal So (Fe)m = (Fe)p
\( \Rightarrow \frac{{{V_m}}}{{\sqrt {{g_m}{L_m}} }} = \frac{{{V_P}}}{{\sqrt {{g_p}{L_p}} }}\)
Since gm = gp
\(\therefore \frac{{{V_m}}}{{\sqrt {{L_m}} }} = \frac{{{V_p}}}{{\sqrt {{L_p}} }}\)
\( \Rightarrow \frac{{{{\rm{V}}_{\rm{p}}}}}{{{{\rm{V}}_{\rm{m}}}}} = \sqrt {\frac{{{{\rm{L}}_{\rm{p}}}}}{{{{\rm{L}}_{\rm{m}}}}}} = \sqrt {{{\rm{L}}_{\rm{r}}}} \)
Where Lr = Scale ratio for length
Froude Model Law Question 8:
River model made to length scale ratio of 1/100 and depth scale ratio of 1/16. A Peak discharge of 25,600 m/s in the river discharge in model will be
Answer (Detailed Solution Below)
4
Froude Model Law Question 8 Detailed Solution
For open channel
\({\left. {{F_r}} \right)_p} = {\left. {{F_r}} \right)_m} \Rightarrow {\left. {\frac{{\frac{Q}{A}}}{{\sqrt L }}} \right)_p} = \left. {{{\left. {\frac{{\frac{Q}{A}}}{{\sqrt L }}} \right)}_m}} \right|\frac{{{L_p}}}{{{L_m}}} = 16\)
⇒Qm = 4m3/s c)