Differentiation by taking log MCQ Quiz in বাংলা - Objective Question with Answer for Differentiation by taking log - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Mar 14, 2025
Latest Differentiation by taking log MCQ Objective Questions
Top Differentiation by taking log MCQ Objective Questions
Differentiation by taking log Question 1:
\(\left\{\frac{d}{d x}\left(x^{x}+x^{x+1}+x^{x+2}\right)\right\}_{x=e}=\) _________.
Answer (Detailed Solution Below)
Differentiation by taking log Question 1 Detailed Solution
Concept Used:
Power Rule: \(\frac{d}{dx}(x^n) = nx^{n-1}\)
Product Rule: \(\frac{d}{dx}(uv) = u'v + uv'\)
Chain Rule: \(\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)\)
Logarithmic Differentiation
Calculation
Given: \(\{\frac{d}{dx}(x^{x}+x^{x+1}+x^{x+2})\}_{x=e}\)
⇒ \(\frac{d}{dx}(x^{x}+x^{x+1}+x^{x+2}) = \frac{d}{dx}(x^x(1+x+x^2))\)
Let \(y = x^x\). ⇒ \(\ln y = x \ln x\).
⇒ \(\frac{1}{y}\frac{dy}{dx} = \ln x + x \cdot \frac{1}{x} = \ln x + 1\).
⇒ \(\frac{dy}{dx} = y(\ln x + 1) = x^x(\ln x + 1)\).
Using product rule:
⇒ \(\frac{d}{dx}(x^x(1+x+x^2)) = x^x(\ln x + 1)(1+x+x^2) + x^x(1+2x)\)
At \(x = e\):
⇒ \(e^e(\ln e + 1)(1+e+e^2) + e^e(1+2e)\)
⇒ \(e^e(1+1)(1+e+e^2) + e^e(1+2e)\)
⇒ \(2e^e(1+e+e^2) + e^e(1+2e)\)
⇒ \(e^e(2+2e+2e^2+1+2e)\)
⇒ \(e^e(2e^2+4e+3)\)
∴ The value is \(e^e(2e^2+4e+3)\).
Hence option 3 is correct.
Differentiation by taking log Question 2:
If \(x^py^q=(x+y)^{p+q}\), then \(\dfrac{dy}{dx}\) is equal to
Answer (Detailed Solution Below)
Differentiation by taking log Question 2 Detailed Solution
Taking \(\log\) on both sides, we get
\(p\,\log\,x+q\,\log\,y=(p+q)\log(x+y)\)
\(\Rightarrow \displaystyle \frac{p}{x}+\frac{q}{y}\frac{dy}{dx}= \frac{(p+q)}{(x+y)}\left(1+\frac{dy}{dx}\right)\)
\(\Rightarrow \displaystyle \left(\frac{p}{x}-\frac{p+q}{x+y}\right)=\left(\frac{p+q}{x+y}-\frac{q}{y}\right)\frac{dy}{dx}\)
\(\Rightarrow \displaystyle \frac{dy}{dx}=\frac{y}{x}\)
Differentiation by taking log Question 3:
If \(x^{p} + y^{q} = (x + y)^{p + q}\), then \(\dfrac {dy}{dx}\) is
Answer (Detailed Solution Below)
Differentiation by taking log Question 3 Detailed Solution
If \(x^{p} + y^{q} = (x + y)^{p + q}\)
Taking log on both sides,
\(p\log x + q\log y = (p + q) \log (x + y)\)
On differentiating w.r.t. x, we get
\(\dfrac {p}{x} + \dfrac {q}{y}\cdot \dfrac {dy}{dx} = \dfrac {(p + q)}{(x + y)} \left (1 + \dfrac {dy}{dx}\right )\)
\(\left \{\dfrac {p}{x} - \dfrac {p + q}{x + y}\right \} = \left \{\dfrac {p + q}{x + y} - \dfrac {q}{y}\right \} \dfrac {dy}{dx}\)
\(\left \{\dfrac {px + py - px - qx}{x (x + y)}\right \} = \left \{\dfrac {py + qy - qx - qy}{y (x + y)}\right \} \dfrac {dy}{dx}\)
\(\Rightarrow \dfrac {(py - qx)}{x} = \dfrac {(py - qx)}{y}\cdot \dfrac {dy}{dx}\)
\(\Rightarrow \dfrac {dy}{dx} = \dfrac {y}{x}\)
Differentiation by taking log Question 4:
If y = x\(\sqrt x\), then \(\frac{dy}{dx}=\)
Answer (Detailed Solution Below)
Differentiation by taking log Question 4 Detailed Solution
Concept:
Product rule: (f.g)'(x) = f '(x).g(x) + f(x).g'(x)
Formula used :
- (ln x)' = \(1 \over x\)
- \((\sqrt x)' = {1 \over 2 \sqrt x}\)
Calculation:
Given, y = x\(\sqrt x\),
Taking log on both sides,
ln y = \(\sqrt x\) ln x
Differentiating both sides,
⇒ \({ 1\over y} .{dy \over dx} = {1\over 2\sqrt x}.\ln x + \sqrt x.{1 \over x}\)
⇒ \({ 1\over y} .{dy \over dx} = {1\over 2\sqrt x}.\ln x +{1 \over \sqrt x}\)
⇒ \({ 1\over y} .{dy \over dx} = {\frac{(\ln x+2)}{2\sqrt x}}\)
⇒ \({ dy \over dx} = {\frac{y.(\ln x+2)}{2\sqrt x}}\)
∴ The correct option is (5).
Differentiation by taking log Question 5:
If f(x) = \(\rm (\log x)^{\sin x}\), find the value of f'(x).
Answer (Detailed Solution Below)
Differentiation by taking log Question 5 Detailed Solution
Concept:
- \(\rm d\over dx\)xn = nxn-1
- \(\rm d\over dx\)sin x = cos x
- \(\rm d\over dx\)cos x = -sin x
- \(\rm d\over dx\)ex = ex
- \(\rm d\over dx\)ln x = \(\rm1\over x\)
- \(\rm d\over dx\)(ax + b) = a
- \(\rm d\over dx\)tan x = sec2 x
- \(\rm d\over dx\)f(x)g(x) = f'(x)g(x) + f(x)g'(x)
- \(\rm d\over dx\) sin-1 x = \(\rm 1\over\sqrt{1 - x^2}\)
- \(\rm d\over dx\) tan-1 x = \(\rm 1\over1 + x^2\)
Calculation:
Given: f(x) = \(\rm (\log x)^{\sin x}\)
Taking log both sides, we get
⇒ log f(x) = log \(\rm (\log x)^{\sin x}\)
⇒ log f(x) = sin x [log(log x)] (∵ log mn = n log m)
Let f(x) = y
Differentiating with respect to x, we get
\(\rm {1\over y}{dy\over dx}\) = \(\rm \cos x\cdot [log(\log x)] \ +\ \sin x\cdot({\frac {1}{x\cdot \log x}})\)
\(\rm {dy\over dx}\) = y × \(\rm [\cos x\cdot [log(\log x)] \ +\ \sin x\cdot({\frac {1}{x\cdot \log x}})]\)
\(\rm {dy\over dx}\) = \(\rm \rm (\log x)^{\sin x} \cdot[\cos x\cdot [log(\log x)] \ + \sin x\cdot({\frac {1}{x\cdot \log x}})]\)
Differentiation by taking log Question 6:
If xy = ex - y , then find the value of \(\frac{\mathrm{d} \rm y}{\mathrm{d} x}\)
Answer (Detailed Solution Below)
Differentiation by taking log Question 6 Detailed Solution
Calculation:
xy = ex - y
Taking log on both sides, we get
⇒ xy = log ex - y
⇒ y log x = (x - y) loge e
⇒ y log x = x - y [∵ loge e = 1]
⇒ ( 1 + log x)y = x
⇒ y = \(\frac{\rm x}{1 + \rm log x}\)
Differentiating both sides , we get
\(\frac{\mathrm{d} \rm y}{\mathrm{d} x}\) = \(\frac{1 +\rm log x - x × \frac{1}{x} }{(1 + log x)^{2}}\)
= \(\frac{1 +\rm log x - 1 }{(1 + log x)^{2}}\)
= \(\frac{\rm log x }{(1 + log x)^{2}}\)
Differentiation by taking log Question 7:
Differentiate x-ln x with respect to \(\rm e^{x^{2}}\)
Answer (Detailed Solution Below)
Differentiation by taking log Question 7 Detailed Solution
Concept:
Parametric Form:
If f(x) and g(x) are the functions in x, then
\(\rm df(x)\over dg(x)\) = \(\rm \frac{df(x)\over dx}{dg(x)\over dx}\)
Calculation:
Let z = x-ln x
Taking log both sides, we get
ln z = ln x-ln x
ln z = - (ln x)2 (∵ ln mn = n ln m)
Differentiating with respect to x
\(\rm {1\over z}{dz\over dx}\) = -2 ln x\(\rm\left({1\over x}\right)\)
\(\rm {dz\over dx} = z\left[-2\ln x\over x\right]\)
\(\rm {dz\over dx} = x^{-\ln x}\left[-2\ln x\over x\right]\)
\(\rm {dz\over dx} = -2x^{-\ln x}\left[\ln x\over x\right]\)
Also y = \(\rm e^{x^{2}}\)
Taking log both sides, we get
ln y = ln \(\rm e^{x^{2}}\)
ln y = x2 ln e (∵ ln mn = n ln m)
ln y = x2 (∵ ln e = 1)
Differentiating with respect to x
\(\rm {1\over y}{dy\over dx} = 2x\)
\(\rm {dy\over dx} = y[2x]\)
\(\rm {dy\over dx} = 2x e^{x^{2}}\)
The required result is
\(\rm dz\over dy\) = \(\rm {dz\over dx}\over{dy\over dx}\)
= \(\rm -2x^{-\ln x}\left[\ln x\over x\right]\over2xe^{x^{2}}\)
= \(\rm -x^{-\ln x}(\ln x)\over x^2e^{x^{2}}\)
Differentiation by taking log Question 8:
If \(x=e^{y+e^{y+e^{y+...}}}\) then \(\frac {dy}{dx}\) is
Answer (Detailed Solution Below)
Differentiation by taking log Question 8 Detailed Solution
Concept:
log10(e) = 1 and
(log10(x))y = ylog(x)
Calculation:
Given:
\(x=e^{y+e^{y+e^{y+...}}}\)
For infinite terms, the above equation can be written as:
\(x=e^{y+x}\)
Taking log both sides
log(x) = (y + x)loge
log(x) = y + x
Differentiating both sides:
\(\frac{1}{x}=\frac{dy}{dx} \ + \ 1\)
\(\frac{dy}{dx}=\frac{1 \ - \ x}{x}\)
Hence option (2) is the solution.