Exams
Test Series
Previous Year Papers
JEE Main Previous Year Question Paper JEE Advanced Previous Year Papers NEET Previous Year Question Paper CUET Previous Year Papers COMEDK UGET Previous Year Papers UP Polytechnic Previous Year Papers AP POLYCET Previous Year Papers TS POLYCET Previous Year Papers KEAM Previous Year Papers MHT CET Previous Year Papers WB JEE Previous Year Papers GUJCET Previous Year Papers ICAR AIEEA Previous Year Papers CUET PG Previous Year Papers JCECE Previous Year Papers Karnataka PGCET Previous Year Papers NEST Previous Year Papers KCET Previous Year Papers LPUNEST Previous Year Papers AMUEEE Previous Year Papers IISER IAT Previous Year Papers Bihar Diploma DECE-LE Previous Year Papers NPAT Previous Year Papers JMI Entrance Exam Previous Year Papers PGDBA Exam Previous Year Papers AP ECET Previous Year Papers PU CET Previous Year Papers GPAT Previous Year Papers CEED Previous Year Papers AIAPGET Previous Year Papers JKCET Previous Year Papers HPCET Previous Year Papers CG PAT Previous Year Papers SRMJEEE Previous Year Papers BCECE Previous Year Papers AGRICET Previous Year Papers TS PGECET Previous Year Papers MP PAT Previous Year Papers IIT JAM Previous Year Papers CMC Vellore Previous Year Papers ACET Previous Year Papers TS EAMCET Previous Year Papers NATA Previous Year Papers AIIMS MBBS Previous Year Papers BITSAT Previous Year Papers JEXPO Previous Year Papers HITSEEE Previous Year Papers AP EAPCET Previous Year Papers UCEED Previous Year Papers CG PET Previous Year Papers OUAT Previous Year Papers VITEEE Previous Year Papers
Syllabus
JEE Main Syllabus JEE Advanced Syllabus NEET Syllabus CUET Syllabus COMEDK UGET Syllabus UP Polytechnic JEECUP Syllabus AP POLYCET Syllabus TS POLYCET Syllabus KEAM Syllabus MHT CET Syllabus WB JEE Syllabus OJEE Syllabus ICAR AIEEA Syllabus CUET PG Syllabus NID Syllabus JCECE Syllabus Karnataka PGCET Syllabus NEST Syllabus KCET Syllabus UPESEAT EXAM Syllabus LPUNEST Syllabus PUBDET Syllabus AMUEEE Syllabus IISER IAT Syllabus NPAT Syllabus JIPMER Syllabus JMI Entrance Exam Syllabus AAU VET Syllabus PGDBA Exam Syllabus AP ECET Syllabus GCET Syllabus CEPT Syllabus PU CET Syllabus GPAT Syllabus CEED Syllabus AIAPGET Syllabus JKCET Syllabus HPCET Syllabus CG PAT Syllabus BCECE Syllabus AGRICET Syllabus TS PGECET Syllabus BEEE Syllabus MP PAT Syllabus MCAER PG CET Syllabus VITMEE Syllabus IIT JAM Syllabus CMC Vellore Syllabus AIMA UGAT Syllabus AIEED Syllabus ACET Syllabus TS EAMCET Syllabus PGIMER Exam Syllabus NATA Syllabus AFMC Syllabus AIIMS MBBS Syllabus BITSAT Syllabus BVP CET Syllabus JEXPO Syllabus HITSEEE Syllabus AP EAPCET Syllabus GITAM GAT Syllabus UPCATET Syllabus UCEED Syllabus CG PET Syllabus OUAT Syllabus IEMJEE Syllabus VITEEE Syllabus SEED Syllabus MU OET Syllabus
Books
Cut Off
JEE Main Cut Off JEE Advanced Cut Off NEET Cut Off CUET Cut Off COMEDK UGET Cut Off UP Polytechnic JEECUP Cut Off AP POLYCET Cut Off TNEA Cut Off TS POLYCET Cut Off KEAM Cut Off MHT CET Cut Off WB JEE Cut Off ICAR AIEEA Cut Off CUET PG Cut Off NID Cut Off JCECE Cut Off Karnataka PGCET Cut Off NEST Cut Off KCET Cut Off UPESEAT EXAM Cut Off AMUEEE Cut Off IISER IAT Cut Off Bihar Diploma DECE-LE Cut Off JIPMER Cut Off JMI Entrance Exam Cut Off PGDBA Exam Cut Off AP ECET Cut Off GCET Cut Off CEPT Cut Off PU CET Cut Off CEED Cut Off AIAPGET Cut Off JKCET Cut Off HPCET Cut Off CG PAT Cut Off SRMJEEE Cut Off TS PGECET Cut Off BEEE Cut Off MP PAT Cut Off VITMEE Cut Off IIT JAM Cut Off CMC Vellore Cut Off ACET Cut Off TS EAMCET Cut Off PGIMER Exam Cut Off NATA Cut Off AFMC Cut Off AIIMS MBBS Cut Off BITSAT Cut Off BVP CET Cut Off JEXPO Cut Off HITSEEE Cut Off AP EAPCET Cut Off GITAM GAT Cut Off UCEED Cut Off CG PET Cut Off OUAT Cut Off VITEEE Cut Off MU OET Cut Off
Latest Updates
Eligibility
JEE Main Eligibility JEE Advanced Eligibility NEET Eligibility CUET Eligibility COMEDK UGET Eligibility UP Polytechnic JEECUP Eligibility TNEA Eligibility TS POLYCET Eligibility KEAM Eligibility MHT CET Eligibility WB JEE Eligibility OJEE Eligibility ICAR AIEEA Eligibility CUET PG Eligibility NID Eligibility JCECE Eligibility Karnataka PGCET Eligibility NEST Eligibility KCET Eligibility LPUNEST Eligibility PUBDET Eligibility AMUEEE Eligibility IISER IAT Eligibility Bihar Diploma DECE-LE Eligibility NPAT Eligibility JIPMER Eligibility JMI Entrance Exam Eligibility AAU VET Eligibility PGDBA Exam Eligibility AP ECET Eligibility GCET Eligibility CEPT Eligibility PU CET Eligibility GPAT Eligibility CEED Eligibility AIAPGET Eligibility JKCET Eligibility HPCET Eligibility CG PAT Eligibility SRMJEEE Eligibility BCECE Eligibility AGRICET Eligibility TS PGECET Eligibility MP PAT Eligibility MCAER PG CET Eligibility VITMEE Eligibility IIT JAM Eligibility CMC Vellore Eligibility AIMA UGAT Eligibility AIEED Eligibility ACET Eligibility PGIMER Exam Eligibility CENTAC Eligibility NATA Eligibility AFMC Eligibility AIIMS MBBS Eligibility BITSAT Eligibility JEXPO Eligibility HITSEEE Eligibility AP EAPCET Eligibility GITAM GAT Eligibility UPCATET Eligibility UCEED Eligibility CG PET Eligibility OUAT Eligibility IEMJEE Eligibility SEED Eligibility MU OET Eligibility

Lattice Enthalpy of an Ionic Solid - Understanding Lattice Structure and Enthalpy

Last Updated on Mar 12, 2025
Download As PDF
IMPORTANT LINKS
The Solid State
Difference Between Isotropic and Anisotropic Zinc Blende Structure Amorphous Solids Crystalline Solids Metallic Bonds Packing in Solids Crystal Structure Interstitial Compounds Defects in Crystal Structure Frenkel Defect Bravais Lattice Phase Changes Unit Cell Density of Unit Cell Thermal Conductivity of Copper Carbon Nanotubes Polymorphism Fick's Law of Diffusion Ductility and Malleability Crystallization Types of Solids Charge Density and Melting Point Close Packing in Three Dimensions Conductors Crystal Salt Crystal Lattices and Unit Cells Dielectric Properties of Solids Difference Between Crystalline and Amorphous Solids Ductility Electrical Properties of Solids Materials Melting Point Structure of Zeolites "BCC Classification of Crystalline Solids Imperfections in Solids Schottky Defect Thermal Conductivity Unit Cell Packing Efficiency Voids in Solid State Lattice Enthalpy of an Ionic Solid Classification of Solids Based on Crystal Structure Fluorite Structure
Solutions Electrochemistry Chemical Kinetics D and F Block Elements Coordination Compounds Haloalkanes and Haloarenes Alcohols Phenols and Ethers Aldehydes Ketones and Carboxylic Acids Amines Biomolecules Surface Chemistry P Block Elements Polymers Chemistry in Everyday Life States of Matter Hydrogen S Block Elements Environmental Chemistry Some Basic Concepts of Chemistry Structure of Atom Classification of Elements and Periodicity in Properties Chemical Bonding and Molecular Structure Thermodynamics Equilibrium Redox Reactions Organic Chemistry Hydrocarbons

Decoding Lattice Structure and Lattice Enthalpy

Ionic compounds are known for their robust molecular force of attraction, which is why they are typically found in solid states. In these ionic solids, the molecules form a three-dimensional grid-like pattern, commonly referred to as a lattice structure. The lattice enthalpy of an ionic solid is the energy needed to separate one mole of the solid ionic compound into gaseous ions entirely.

Lattice enthalpy serves as an indicator of the strength of an ionic compound. The formation of ions involves either the loss or gain of electrons, processes which either require or release energy respectively. Consequently, the strength of an ionic compound can be related to the ease of formation of positive and negative ions from their neutral atoms. This ease of formation is dependent on ionisation enthalpy and electron affinity, as explained below:

  1. The creation of positive ions necessitates the removal of electrons. The energy needed to remove an electron from an atom is known as ionisation enthalpy. Atoms with lower ionisation potential ( ionisation enthalpy ) will exhibit higher lattice energy.
  2. Negative ions are formed by the addition of an electron. Electron gain enthalpy refers to the energy released when an electron is added to an atom. Thus, the higher the electron affinity, the greater the lattice energy.

Factors Influencing Lattice Enthalpy

1. Ion Charge:

The ions within the lattice crystal are drawn to each other due to the electrostatic force of attraction. This force is directly proportional to the charge magnitude, meaning the higher the charge, the stronger the lattice enthalpy. For instance, while Sodium Chloride and Magnesium Chloride share the same crystal lattice arrangement, the latter's lattice enthalpy is greater. This is due to the 2+ charge on magnesium ions compared to the 1+ charge on sodium ions, reinforcing the notion that electrostatic force of attraction is directly proportional to charge.

2. Atom Size:

Smaller atoms, due to their reduced interatomic distances, have stronger binding forces, leading to higher lattice enthalpy. For instance, as we move down group 17 of the modern periodic table from fluoride to bromide, the lattice energy continually decreases for their lithium salts, due to the increasing atom size from fluoride to bromide.

Dive deeper into lattice enthalpy, crystal lattices and the stability of ionic compounds.

Explore further:

More Articles for Chemistry

Frequently Asked Questions

In ionic solids, the molecules are arranged in a three-dimensional grid-like structure known as a lattice structure.

The amount of energy required to completely separate one mole of the solid ionic compound into constituent gaseous ions is known as lattice enthalpy.

The ions in the lattice crystal are attracted due to an electrostatic force of attraction present between them. This force is directly proportional to the magnitude of charge, hence higher the charge stronger the lattice enthalpy.

Smaller atoms have smaller interatomic distances and so have a stronger binding force. This results in higher lattice enthalpy.

Report An Error