The solution of the Fredholm integral equation \(y(s)=s+2 \int_0^1\left(s t^2+s^2 t\right) y(t) d t\) is

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. y(s) = -(50s + 40s2)
  2. y(s) = (30s + 15s2)
  3. y(s) = -(30s + 40s2)
  4. y(s) = (60s + 50s2)

Answer (Detailed Solution Below)

Option 3 : y(s) = -(30s + 40s2)
Free
Seating Arrangement
3.3 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Explanation

Given:

y(s) = s + 2 \(∫_0^1 s t^2 y(t) d t+2 ∫_0^1 s^2 t y(t) d t\)

let \(\int_0^1\)t2 y(t) dt = c1    -- (i)

\(\int_0^1\) t y(t) dt = c2    -- (ii)

⇒ y(s) = s + 2sc1 + 2s2 c2 ---- (iii)

By (ii), c2 = \(\int_0^1\)t[t + 2c1 t + 2c2t2]dt

=\(\int_0^1\)(t2 + 2t2 c1 + 2c2 t3)dt

c2​ \(\frac{t^3}{3}\left[1+\frac{2}{c_1}\right]+\left.\frac{c_2 t^4}{2}\right|_0 ^1=\left(\frac{1}{3}+\frac{2}{3} c_1\right)+\frac{c_2}{2}\)

\(⇒ \frac{3 C_2}{2}=1+\frac{2}{C_1} \)

⇒ 4C1 - 3c2 = -2     - (iv)

\(C_1 =∫_0^1 t^2\left[t+2 c_1 t+2 t^2 c_2\right] d t \)

\(=∫_0^1\left[t^3\left(1+2 c_1\right)+2 t^4 c_2\right] d t\)

\(c_1 =\left[\left(1+2 c_1\right) \frac{t^4}{4}+\frac{2 c_2 t^5}{5}\right]_0^1=\frac{1+2 c_1}{4}+\frac{2 c_2}{5}\)

 20c1 = 5 + 10c1 + 8c2

⇒ 10c1 - 8c2 = 5 - (v)

Now solving equation (iv) and (v) to find c1 & c2.

20c1 - 15c2 = - 10 

20c1 - 16c2 = 10

subtracting we get

c2 = - 20

Hence (iv) implies 

 4c1​ + 60 = -2 ⇒ 4c= - 62 ⇒ c= - 31/2 

thus y(s) = s + 2sc1 + 2s2c2

= s + (-31) s + 2s2(-20)

y(s) = s - 31s - 40s2  = -(30s + 40s2)

option (3) is correct

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

Get Free Access Now
Hot Links: teen patti master golden india teen patti all app teen patti live teen patti 3a teen patti star login