Question
Download Solution PDFComprehension
निम्न तीन (03) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए :
मान लीजिए p = tan 2α - tanα और q = cotα - cot 2α
किसके बराबर है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFगणना:
हमें दिया गया है:
\( p = \tan(2\alpha) - \tan(\alpha) \)
\( q = \cot(\alpha) - \cot(2\alpha) \)
हमें p + q ज्ञात करना है।
\( p + q = \left( \frac{\sin^2(2\alpha) - \cos^2(2\alpha)}{\sin(2\alpha) \cdot \cos(2\alpha)} \right) + \left( \frac{\cos^2(\alpha) - \sin^2(\alpha)}{\sin(\alpha) \cdot \cos(\alpha)} \right) \)
दोनों पदों को सरल करने पर:
\( = \frac{-2\cos(4\alpha)}{\sin(4\alpha)} + \frac{2\cos(2\alpha)}{\sin(2\alpha)} \)
अब, गुणनखंडन और आगे सरलीकरण करने पर:
\( = \frac{2(\sin(4\alpha) \cdot \cos(2\alpha) - \cos(4\alpha) \cdot \sin(2\alpha))}{\sin(4\alpha) \cdot \sin(2\alpha)} \)
ज्या सर्वसमिका को पहचानने पर, हमें मिलता है:
\( = \frac{2 \sin(4\alpha - 2\alpha)}{\sin(4\alpha) \cdot \sin(2\alpha)} \)
अंत में, इसे सरल करने पर:
\( = \frac{2 \sin(2\alpha)}{\sin(4\alpha) \cdot \sin(2\alpha)} \)
अंतिम परिणाम: \( p + q = 2 \csc (4\alpha) \) है।
∴ सही उत्तर विकल्प (4) है।
Last updated on Jul 8, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.