Comprehension

निम्न तीन (03) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए :
मान लीजिए p = tan 2α   - tanα और q = cotα - cot 2α

किसके बराबर है?

This question was previously asked in
NDA-I (Mathematics) Official Paper (Held On: 13 Apr, 2025)
View all NDA Papers >
  1. sec4α
  2. cosec4α
  3. 2sec4α
  4. 2cosec4α

Answer (Detailed Solution Below)

Option 4 : 2cosec4α
Free
UPSC NDA 01/2025 General Ability Full (GAT) Full Mock Test
6 K Users
150 Questions 600 Marks 150 Mins

Detailed Solution

Download Solution PDF

गणना:

हमें दिया गया है:

\( p = \tan(2\alpha) - \tan(\alpha) \)

\( q = \cot(\alpha) - \cot(2\alpha) \)

हमें p + q ज्ञात करना है।

\( p + q = \left( \frac{\sin^2(2\alpha) - \cos^2(2\alpha)}{\sin(2\alpha) \cdot \cos(2\alpha)} \right) + \left( \frac{\cos^2(\alpha) - \sin^2(\alpha)}{\sin(\alpha) \cdot \cos(\alpha)} \right) \)

दोनों पदों को सरल करने पर:

\( = \frac{-2\cos(4\alpha)}{\sin(4\alpha)} + \frac{2\cos(2\alpha)}{\sin(2\alpha)} \)

अब, गुणनखंडन और आगे सरलीकरण करने पर:

\( = \frac{2(\sin(4\alpha) \cdot \cos(2\alpha) - \cos(4\alpha) \cdot \sin(2\alpha))}{\sin(4\alpha) \cdot \sin(2\alpha)} \)

ज्या सर्वसमिका को पहचानने पर, हमें मिलता है:

\( = \frac{2 \sin(4\alpha - 2\alpha)}{\sin(4\alpha) \cdot \sin(2\alpha)} \)

अंत में, इसे सरल करने पर:

\( = \frac{2 \sin(2\alpha)}{\sin(4\alpha) \cdot \sin(2\alpha)} \)

अंतिम परिणाम: \( p + q = 2 \csc (4\alpha) \) है। 

सही उत्तर विकल्प (4) है।

Latest NDA Updates

Last updated on Jul 8, 2025

->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.

->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti lotus teen patti apk download teen patti game - 3patti poker