Find the Fourier series coefficients for the continuous time periodic signal

\(x\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {1.5,\;\;0 < t < 1}\\ { - 1.5,\;\;1 < t < 2} \end{array}} \right.\)

With fundamental frequency f0 = π

This question was previously asked in
CIL MT Electrical: 2020 Official Paper
View all CIL MT EE Papers >
  1. \(\frac{3}{{n\pi }}\left[ {1 - \cos n\pi } \right]\)
  2. \(\frac{3}{{\left( {n - 1} \right)\pi }}[1 - \sin n\pi ]\)
  3. \(\frac{3}{{\left( {n - 1} \right)\pi }}[1 - \cos n\pi ]\)
  4. \(\frac{9}{{2n\pi }}[2 - \cos n\pi ]\;\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{3}{{n\pi }}\left[ {1 - \cos n\pi } \right]\)
Free
CIL EE - Revision Qs Quiz 7
9.6 K Users
5 Questions 5 Marks 5 Mins

Detailed Solution

Download Solution PDF

Concept:

Let f(x) is a periodic function defined in (C, C + 2L) with period 2L, then the Fourier series of f(x) is

\(f\left( x \right) = \frac{{{a_0}}}{2} + \mathop \sum \limits_{n = 1}^\infty \left[ {{a_n}\cos \frac{{n\pi x}}{L} + {b_n}\sin \frac{{n\pi x}}{L}} \right]\)

Where the Fourier series coefficients a0, an, and bn are given by

\({a_0} = \frac{1}{L}\mathop \smallint \limits_C^{C + 2L} f\left( x \right)dx\)

\({a_n} = \frac{1}{L}\mathop \smallint \limits_C^{C + 2L} f\left( x \right)\cos \frac{{n\pi x}}{L}dx\)

\({b_n} = \frac{1}{L}\mathop \smallint \limits_C^{C + 2L} f\left( x \right)\sin \frac{{n\pi x}}{L}dx\)

  • If f(x) is an odd function, then only bn exists where a0 and bn are zero.
  • If f(x) is an even function, then both a0 and an exists where bn is zero.

 

Calculation:

\(x\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {1.5,\;\;0 < t < 1}\\ { - 1.5,\;\;1 < t < 2} \end{array}} \right.\)        

Fundamental period = 2

The given function is an odd function and hence only bn exists.

\({b_n} = \frac{2}{L}\mathop \smallint \limits_0^L x\left( t \right)\sin \frac{{n\pi t}}{L}dt\)

Here L = 1

\( = \frac{2}{1}\mathop \smallint \limits_0^1 1.5\sin n\pi tdt\)

\( = 3\left[ { - \frac{{\cos n\pi t}}{{n\pi }}} \right]_0^1\)

\( = \frac{3}{{n\pi }}\left[ {1 - \cos n\pi } \right]= \frac{3}{{n\pi }}\left[ {1 - \cos n\pi } \right]\)

Latest CIL MT EE Updates

Last updated on May 10, 2024

-> Coal India Limited (CIL), a Maharatna Public Sector Unit, will release the official notification for the CIL MT EE.

-> For the previous recruitment cycle, the authorities have released 117 vacancies in total. The number of vacancies is expected to increase this year.

-> Candidates applying for the position should have a B.Tech (Electrical) degree. In order to improve their exam preparation, candidates can also check the CIL MT EE Previous Year Papers.

More Fourier Series Questions

Get Free Access Now
Hot Links: teen patti boss teen patti master plus teen patti casino apk