By applying Stokes theorem, the value of \(\mathop \oint \limits_C \left[ {\left( {x + y} \right)dx + \left( {2x - z} \right)dy + \left( {y + z} \right)dz} \right]\) where C is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6), is

This question was previously asked in
BPSC Asstt. Prof. ME Held on Nov 2015 (Advt. 22/2014)
View all BPSC Assistant Professor Papers >
  1. 0
  2. 12
  3. 21
  4. 13

Answer (Detailed Solution Below)

Option 3 : 21

Detailed Solution

Download Solution PDF

Concept:

By stokes theorem:

\(\oint_{c}^{}\vec{F}.\vec{dr}=\iint_{s}^{}(∇\times\vec{F}).\hat {n}.ds\)

Calculation:

Given:

\(\vec{F}.\vec{dr}= \left[ {\left( {x + y} \right)dx + \left( {2x - z} \right)dy + \left( {y + z} \right)dz} \right]\)

\(∴\vec{F}=(x+y)\hat{i}\;+(2x-z)\hat{j}\;+(y+z)\hat{k}\)

\(∇ \times \vec F = \left| {\begin{array}{*{20}{c}} \hat{i}&\hat{j}&\hat{k}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {x + y}&{2x - z}&{y + z} \end{array}} \right| = 2\hat{i} + \hat{k}\)

MATHS FT10 images Q4

Equation of the plane through A, B, C is

\(\frac{x}{2} + \frac{y}{3} + \frac{z}{6} = 1\)

\(∴\; 3x + 2y + z = 6 \)

∴ ϕ = 3x + 2y + z - 6 represents equation of the surface.

Vector normal to the surface is given by gradient:

\(\nabla \phi=\left ( \hat{i}\frac{\partial}{\partial x}\;+\;\hat{j}\frac{\partial}{\partial y}\;+\;\hat{k}\frac{\partial}{\partial z} \right )(3x\;+\;2y\;+\;z\;-6)\)

\(\vec{n}=3\hat{i}\;+\;2\hat{j}\;+\hat{k}\)

Unit vector n̂: 

\(̂{n}=\frac{\vec{n}}{|\vec n|}\Rightarrow\frac{3\hat{i}\;+\;2\hat{j}\;+\;\hat{k}}{\sqrt{3^2\;+\;2^2\;+\;1^2}}=\frac{3\hat{i}\;+\;2\hat{j}\;+\;\hat{k}}{\sqrt{14}}\)

\(\oint_{c}^{}\vec{F}.\vec{dr}=\iint_{s}^{}(∇\times\vec{F}).\hat{n}.ds\)

\(\iint_{s}^{}(2\hat{i}\;+\;\hat{k}).\left ( \frac{3\hat{i}\;+\;2\hat{j}\;+\;\hat k}{\sqrt{14}} \right )ds\)

\(\frac{1}{\sqrt{14}}(6\;+\;1)\iint_{s}^{}ds\)

\(\rm [where \iint_{s}^{}represents\;area\;of\;triangle\;ABC]\)

A (2, 0, 0), B (0, 3, 0) and C (0, 0, 6)

\(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \) ⇒ [(0 - 2), (3 - 0), (0 - 0)] = (-2, 3, 0)

\(\overrightarrow {BC} = \overrightarrow {OC} - \overrightarrow {OB} \) ⇒ [(0 - 0), (0 - 3), (6 - 0)] = (0, -3, 6)

\(Area\;of\;{\rm{\Delta }}ABC \)

\(= magnitude ~of ~\frac{1}{2} \times \overrightarrow {AB} \times \overrightarrow {BC} \)

\(\therefore\;\frac{1}{2}\left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {-2}&3&0\\ 0&{-3}&6 \end{array}} \right|\)

\(\therefore\;\frac{1}{2}\left( {18\hat i + 12\hat j + 6\hat k} \right)\)

\(\therefore\;9\hat i + 6\hat j + 3\hat k\)

\(\therefore\;Area = \sqrt {{9^2} + {6^2} + {3^2}} \Rightarrow \sqrt {126} = \sqrt {14 \times 9} \Rightarrow 3\sqrt {14} \)

\(\frac{1}{\sqrt{14}}(6\;+\;1)\iint_{s}^{}ds\)

\(\therefore\;\frac{7}{\sqrt{14}}\times\;3\sqrt{14}\Rightarrow21\;units\)

Latest BPSC Assistant Professor Updates

Last updated on Jun 23, 2025

-> The Document Verification for BPSC Assistant Professor (Advt. No. 04/2025 to 28/2025) will be conducted between 7th July 2025 to 24th July 2025

-> The BPSC Assistant Professor Notification 2025 was released for 1711 vacancies under Speciality (Advt. No.04/2025 to 28/2025).

-> The recruitment is ongoing for 220 vacancies (Advt. No. 01/2024 to 17/2024).

-> The salary under BPSC Assistant Professor Recruitment is approximately Rs 15600-39100 as per Pay Matrix Level 11. 

-> The selection is based on the evaluation of academic qualifications &  work experience and interview.

-> Prepare for the exam using the BPSC Assistant Professor Previous Year Papers. For mock tests attempt the BPSC Assistant Professor Test Series.

More Vector Calculus Questions

Get Free Access Now
Hot Links: yono teen patti teen patti 500 bonus teen patti diya teen patti rich teen patti vungo