Pythagorean Identities MCQ Quiz in मल्याळम - Objective Question with Answer for Pythagorean Identities - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 22, 2025

നേടുക Pythagorean Identities ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Pythagorean Identities MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Pythagorean Identities MCQ Objective Questions

Top Pythagorean Identities MCQ Objective Questions

Pythagorean Identities Question 1:

sinsinB=.______

  1. }
  2. }
  3. }

Answer (Detailed Solution Below)

Option 4 : }

Pythagorean Identities Question 1 Detailed Solution

Given:

\sin A \sin B

Formula Used:

Calculation:

We know that:

Therefore,

sin A sin B  = }

Thus, the correct answer is option 4.

Pythagorean Identities Question 2:

If , find the value of .

  1. 2
  2. 0
  3. 1
  4. 55

Answer (Detailed Solution Below)

Option 1 : 2

Pythagorean Identities Question 2 Detailed Solution

Given:

Sec θ + 1/cos θ = 2

Concept used:

Calculation:

According to the question:

Sec θ + 1/cos θ = 2

Sec θ + sec θ  = 2

So, θ = 0° 

Now putting the value of θ in equation:

⇒ Sec55 θ + 1/sec55 θ 

⇒ Sec55 0° + 1/sec55 0°

⇒ 1 + 1 = 2

∴ The correct answer is 2.

Pythagorean Identities Question 3:

If , where θ is an acute angle, then the value of sin (θ + 30°) is:

  1. 1

Answer (Detailed Solution Below)

Option 4 :

Pythagorean Identities Question 3 Detailed Solution

Given:

Cos2 θ = 3/4

Formula used:

Cos 30° = Sin 60° = √3/2

Calculation:

Cos2 θ = 3/4

⇒ cos θ = √(3/4) = √3/2

 cos θ  = cos 30° 

⇒ θ = 30° 

sin (θ + 30°) =  sin (30° + 30°)

⇒ sin 60° = √3/2

∴ The correct answer is √3/2.

Pythagorean Identities Question 4:

If secθ + tanθ = x, then find sinθ.

Answer (Detailed Solution Below)

Option 3 :

Pythagorean Identities Question 4 Detailed Solution

Given: 

If sec θ + tan θ = x, find sinθ.

Formulae Used:

(secθ + tanθ) (secθ - tanθ) = 1

Solution:

sec θ + tan θ = x   ---(1)

So, sec θ - tan θ = 1/x  ---(2)

Subtracting equation (2) from equation (1):

sec θ + tan θ - (sec θ - tan θ) = x - 1/x

⇒ sec θ + tan θ - sec θ + tan θ = (x2 - 1)/x

⇒ 2 tan θ = (x2 - 1)/x

⇒ tan θ = (x2 - 1)/2x

We know that tan θ = p/b

So, p = (x2 - 1), b = 2x

h2 = p2 + b2 = (x2 - 1)2 + (2x)2

⇒ h2 = (x2)2 + 1 - 2x2 + 4x2

⇒ h2 = (x2)2 + 1 + 2x2

⇒ h2 = (x2 + 1)2

⇒ h = (x2 + 1)

So, sin θ = p/h = (x2 - 1) / (x2 + 1)

∴ The correct answer is option (3).

Pythagorean Identities Question 5:

  1. -1
  2. 1
  3. ∞ 
  4. 0

Answer (Detailed Solution Below)

Option 2 : 1

Pythagorean Identities Question 5 Detailed Solution

Formula used:

1 - sin2 θ = cosθ

Sec θ × cos θ = 1

Calculation:

Sec θ × √{1 - sin2 θ}

⇒ Sec θ × √{cos2 θ} 

⇒ Sec θ × cos θ = 1

∴ The correct answer is 1. 

Pythagorean Identities Question 6:

If sec2A + tan2A = 3, then what is the value of cot A?

  1. 0
  2. 1

Answer (Detailed Solution Below)

Option 3 : 1

Pythagorean Identities Question 6 Detailed Solution

Given:

sec2A + tan2A = 3

Concept used:

sec2 α - tan2 α = 1

Calculation:

sec2A + tan2A = 3      ....(1)

sec2A - tan2A = 1      ....(2)

Solving (1) and (2) we get,

sec2A + tan2A - sec2A + tan2A = 3 - 1 = 2

2tan2 A = 2

tan2 A = 1

So, tan A = √1 = 1

Now, cot A = 1/1 = 1

∴ The value of cot A is 1.

Pythagorean Identities Question 7:

If tan (t) = 1/3, what is the value of sec (t)?

Answer (Detailed Solution Below)

Option 3 :

Pythagorean Identities Question 7 Detailed Solution

Given:

Formula Used:

Calculation:

⇒ 

⇒ 

⇒ 

⇒ 

The value of sec(t) is  .

Pythagorean Identities Question 8:

The value of :  is equal to: 

  1. tan θ
  2. cosec θ
  3. cot θ
  4. sec θ

Answer (Detailed Solution Below)

Option 3 : cot θ

Pythagorean Identities Question 8 Detailed Solution

Calculations:

We have,

cosec θ - cot θ = (1/sinθ) - (cosθ/sinθ) = (1 - cos θ)/sin θ

So,

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒  cot θ

∴ The correct answer is option (3).

Pythagorean Identities Question 9:

Find the value of (sin θ + cos θ)2 + (sin θ - cos θ)2.

  1. 4
  2. 0
  3. 2
  4. 1

Answer (Detailed Solution Below)

Option 3 : 2

Pythagorean Identities Question 9 Detailed Solution

Formula Used : 

Sin2θ + Cos2θ = 1

Calculation : 

⇒ (sin θ + cos θ)2 + (sin θ - cos θ)2

⇒ sin2θ + cos2θ + 2sinθcosθ + sin2θ + cos2θ - 2sinθcosθ 

⇒ 2(sin2θ + cos2θ)

⇒ 2

∴ The correct answer is 2.

Pythagorean Identities Question 10:

The given expression is equivalent to:

  1. 2sinθ 
  2. 2cosecθ
  3. 2 tan θ
  4. 2tanθ.secθ

Answer (Detailed Solution Below)

Option 2 : 2cosecθ

Pythagorean Identities Question 10 Detailed Solution

Given:

The expression is:

Formula used:

We will use algebraic manipulation and trigonometric identities to simplify the given expression.

Calculations:

 Let x =  . Then, the expression becomes:

Simplify each term separately:

Now the expression becomes:

To combine the terms, we need a common denominator:

Simplify the numerator:

So, the expression becomes:

Substitute back  x = :

8. Using the identity  , the expression becomes:

 = 2

Thus, the simplified expression is: 

Hot Links: teen patti master real cash teen patti customer care number teen patti real cash apk