Sequences & Series (Convergence) MCQ Quiz in বাংলা - Objective Question with Answer for Sequences & Series (Convergence) - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 22, 2025

পাওয়া Sequences & Series (Convergence) उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Sequences & Series (Convergence) MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Sequences & Series (Convergence) MCQ Objective Questions

Top Sequences & Series (Convergence) MCQ Objective Questions

Sequences & Series (Convergence) Question 1:

Which of the following is convergent series

  1. None of the above

Answer (Detailed Solution Below)

Option 4 : None of the above

Sequences & Series (Convergence) Question 1 Detailed Solution

Concept:

The necessary condition of convergent series  is  .

If  then the series  is divergent. 

Explanation:

(1) Let un = cos 

 = cos 0 = 1 ≠ 0

 is divergent.

(2) Let 

∴  = 

 = 1 ≠ 0 

Hence ∑un is divergent.

(3) Let 

∴  =  - 1

  - 1

 - 1

 - 1

 - 1

= ( +0 + 0 + .... + 0) - 1

= 1/3 ≠ 0

∴ ∑ un is divergent.

Hence option (4) is correct

Sequences & Series (Convergence) Question 2:

Let be a sequence defined by

 and consider the infinite series   then 

  1.  Converges Absolutely.
  2.  Diverges.
  3.   oscillatory.
  4. None of these .

Answer (Detailed Solution Below)

Option 1 :  Converges Absolutely.

Sequences & Series (Convergence) Question 2 Detailed Solution

Concept:

Root Test :

To apply the root test, we need to evaluate

 

If this limit is less than 1, the series converges absolutely;

if it is greater than 1, the series diverges;

and if it equals 1, the root test is inconclusive.

Explanation: 
   
Given :  
   

 Apply the root test:
   
  =   .
   
This expression can be simplified by breaking it into two parts:
   
     =  .
   

Evaluate   :


Since   grows very slowly compared to exponential terms,
   
  =   = 1.
   

Evaluate  :


Since   dominates n as , we have
   

  =   =   = 2.
   

Now,    =  
   

Since  =   

the series   converges absolutely by the root test.

Hence Option(1) is the correct answer.

Sequences & Series (Convergence) Question 3:

What is the sum of the following series?

Answer (Detailed Solution Below)

Option 2 :

Sequences & Series (Convergence) Question 3 Detailed Solution

Explanation: 

Let

S =  

After rearranging the first and second terms of each series, we get, 

Here we can see that  is geometric series with a=  and r =  

We know that the sum of infinite geometric series is  , r

Hence the sum of the given series is 

S = 

∴ The sum of the series is 3/10.

Sequences & Series (Convergence) Question 4:

The sum of the infinite series

is equal to

Answer (Detailed Solution Below)

Option 2 :

Sequences & Series (Convergence) Question 4 Detailed Solution

Explanation:

   = 

   = 

   = 

   = 

   = 

  = 1 - e-1- e-1 (as )

   =1- 2e-1 = 1 - (2/e)

Option (2) is true

Sequences & Series (Convergence) Question 5:

Let {} be the sequence of positive real numbers satisfying 

 ,    and .

Then all the terms of the sequence lie in 

 

  1. [1,2]
  2. [0,1]
  3. [1,3]
  4. [0,0.5]

Answer (Detailed Solution Below)

Option 3 : [1,3]

Sequences & Series (Convergence) Question 5 Detailed Solution

Given: 



This can be rewritten as:

 .

⇒ 

Thus, we have:

 =  > 1.

Let   is an increasing.

Let  =y and =x ,then 

y =  .

To check if y is an increasing function, we calculate  :

  =   .

For y to be increasing, we need   > 0, so

 =   >0 

⇒ 0\)

⇒ 

⇒ 

Therefore, y is a increasing function for  .

since  = 1 and   = 3 

Limit of   = [1,3].

Hence Option 3 is the correct answer.

Sequences & Series (Convergence) Question 6:

Consider the following infinite series: 

(a) , (b) 

Which one of the following statements is true? 

  1. (a) is convergent, but (b) is not convergent.  
  2. (a) is not convergent, but (b) is convergent.  
  3. Both (a) and (b) are convergent. 
  4. Neither (a) nor (b) is convergent. 

Answer (Detailed Solution Below)

Option 3 : Both (a) and (b) are convergent. 

Sequences & Series (Convergence) Question 6 Detailed Solution

Concept:

Dirichlet’s test: Let ∑ an be infinite series such that the series of partial sum Sn = a1 + a2 + ... + an is bounded. let {bn} be a monotonically decreasing infinite sequence that converges to zero. Then ∑ anbn converges to some finite value.

Limit comparasion test: Let ∑ an and ∑ bn be two series of positive term and c =  ≠ 0 and finite then ∑ an and ∑ bn converges and diverges together.

Explanation

(a): 

Here  has bounded series of partial sum 

and  is a sequence of monotonically decreasing sequence converges to 0

Then by Drichlet's test  is convergent

(a) is convergent

(b): 

Let an and bn

Then  =  (0/0 form)

                      =  (L'hospital rule)

                   = 1 ≠ 0

So, by limit comparasion test, ∑ an and ∑ bn converges and diverges together.

Now, ∑ bn = ∑  is convergent series by p-series test.

Hence  is convergent

(b) is convergent

(3) is correct

Sequences & Series (Convergence) Question 7:

consider the statements

(A) Series  is divergent.

(B) Series  +  is convergent.

Then 

  1. Both statements (A) and (B) are true.
  2. (A) is true but (B) is false.
  3. (A) is false, but (B) is true.
  4. Neither (A) nor (B) is true.

Answer (Detailed Solution Below)

Option 1 : Both statements (A) and (B) are true.

Sequences & Series (Convergence) Question 7 Detailed Solution

Concept:

(i) Limit Comparison Test : 

If, (a) an ≥ 0 and bn ≥ 0 , ∀ n

(b) , Where c is finite positive constant.

Then, the series  and  behave alike 

(ii) p- series test :

If p > 1. Then the series  converges.

If p ≤ 1. Then the series  diverges.

Explanation:

(a) Let an=sin() and bn

Now,  0(finite) 

By using limit Comparison test

  and  behave alike 

Now, By using p - series test  diverges 

⇒  is also diverges.

(b) + = 

Let an and bn

0(finite)

By using limit Comparison test

  and  behave alike 

Now, By using p - series test  converges. 

⇒  is also converges.

Hence, (1) option is true

Sequences & Series (Convergence) Question 8:

limn→∞

  is equal to 

  1. 0
  2. 1
  3. 2
  4. loge 2

Answer (Detailed Solution Below)

Option 4 : loge 2

Sequences & Series (Convergence) Question 8 Detailed Solution

Concept:

Integral test : This test is used for series of the form  where f(x)  is a continuous, positive, and decreasing function for x ≥ 1 

The series converges if and only if the corresponding improper integral  converges.

Explanation:

Sn = 

 S  

= loge

= loge2

Sequences & Series (Convergence) Question 9:

Let {xn} be a sequence of positive real numbers. Which of the following statements are true?

  1. If the two subsequences {x2n} and {x2n+1} converge, then the sequence {xn} converges
  2. If {(-1)nxn} converges, then the sequence {xn} converges
  3. If  exists then {(xn)1/n} is bounded
  4. If the sequence {xn} is unbounded then every subsequence is unbounded

Answer (Detailed Solution Below)

Option :

Sequences & Series (Convergence) Question 9 Detailed Solution

Explanation - If every subsequence of a sequence is convergent then sequence is convergent 

Option 1:-  Let 

  and    

Here subsequence is convergent but sequence oscillate between 0 and 4 . 

Therefore , Option 1 is False.

Option 2 :- Let xn = (-1)n then  {(-1)nxn} = {1} which is converges but {xn} does not converges

 Option 2 is false.

Option 3:- By Cauchy Second Theorem on limit

If  exist then  also exist

and so bounded. 

Option 3) is True.

Option 4 :- Let 

It is unbounded sequence but  here one subsequence is 4 which is bounded  so, Option 4 is False. 

Sequences & Series (Convergence) Question 10:

Let

and 

Which of the following identities is true?

  1. 3S1 = 4S2
  2. 4S1 = 3S2
  3. S1 + S2 = 0
  4. S1 = S2

Answer (Detailed Solution Below)

Option 4 : S1 = S2

Sequences & Series (Convergence) Question 10 Detailed Solution

Concept:

For |a|

Calculation:

We know that,

Substituting x by -x, we get:

Now, 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

Now, 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒  [∵ - ln x = ln ()]

∴ 

Hot Links: teen patti yes teen patti joy teen patti game paisa wala teen patti master purana